Community structure and multi-wave urban epidemics

Thomas Hladish

The Montreal network

Île Sans Fil public Wi-Fi system

352 Cafés, bars, restaurants, shops, etc.

200,000+ anonymous, unique users

Over 2 million connections, 2004-2010

User, location, on time, off time

Nodes = users, edges = concurrent hotspot use

Network: 103,000 nodes, 650,000 edges

"Extra-social" contacts

ÎSF Hotspots

An unusual epidemic

Multi-wave epidemics

Challenge for modelers and public health officials

Conventional explanations:

- Environmental conditions
- Behavioral changes
- Evolution
- Multiple variants

Ammon 2002

Cities are considered well-mixed

Assessing two-peakedness

$$TP\ score = max(\sqrt{h_1*h_2})/FinalSize$$

TP score distributions

Probability of multi-wave epidemics

Decomposition of a Network

Shuffling stops multi-wave dynamics

Modularity Analysis

Clauset et al (2004). Finding community structure in very large networks. *Phys. Rev. E*

- 1) Start with each node in its own module
- 2) Join 2 modules to maximize the ratio of within-module edges: between module edges
- 3) Repeat until all modules are joined together
- 4) Find point at which ratio deviated most from expected value for randomly wired graph

Module	Module Size	
Α	38569	
В	28101	
С	15558	
	5256	
	1928	
	1897	
	900	
	700	
	629	
	608	
[1410 others]		

Modularity
$$Q = \frac{1}{2m} \sum_{u,v} (A_{u,v} - \frac{k_u k_v}{2m}) \delta(M_u, M_v) = 0.6$$

Geographical structure

An anecdotal epidemic

Why is shuffling so effective?

High degree nodes determine synchrony

log10(degree) of module A node

log10(degree) of module C node

Type of bridges is important

Degree of node (module-bridging edges)

Distance ∞ time

Multiwave metric

Are high degree core nodes in different communities closer than core and non-core nodes within communities?

MWM = 2 * H1H2 / (H1L1 + H2L2)

Multiwave metric

MWM = 2 * H1H2 / (H1L1 + H2L2)

	A&B	A&C	B&C		Freq(MW epis)	
0%	1.06	1.54	1.47	1	46%	
1%	1.04	1.24	1.20		19	
2%	1.08	1.14	1.11		5	
5%	0.98	1.01	0.98		0	
100%	0.85	1.01	1.00		0	

What are "core nodes?"

Possibilities:

- Degree cutoff
- Percentile cutoff
- -80/20 rule
- 50/X rule
- Maximum clique
- Maximum degree clique

Conclusions

Communities are not all the same
Potential understood, but not usually modeled
Epidemic forecasting

Targeted interventions

