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1 What’s EpiFire?1

EpiFire is an open source program for simulating epidemics on contact networks. You can either load
your own network or generate a network, then choose a simulation and run it a bunch of times. EpiFire will
automatically generate plots summarizing the simulated epidemics.

EpiFire is implemented in C++ using Qt5, and is available for Linux (as source code), Windows, and
OS X. Installation files can be downloaded from github.com/tjhladish/EpiFire/releases and source
code is available at github.com/tjhladish/EpiFire/.

2 The interface
The EpiFire graphical interface is divided into two halves: the left side is the “control panel,” and the

right is where plots are drawn that summarize any epidemics you’ve simulated. Let’s begin in the upper left.

2.1 Choose a network

Since EpiFire works by simulating an epidemic on a contact network, we need to tell it what kind of network
to use. There are two options: you can generate a network, or load one that you have on your computer.
The EpiFire graphical interface only supports undirected networks, although directed graphs are supported
in the programmatic interface.

Network source: Generate

If you choose to generate a network, there are a several decisions to make. How big should the network be
(“Number of nodes”)? And how should it be connected?

In order to connect a network, EpiFire needs to know how many neighbors each node should have. The
number of neighbors a node has is called its degree. If we tally all of the degrees that all of the nodes in a
network have, as in a histogram, we have the degree distribution. If you tell EpiFire what degree distribution
you want a network to have, EpiFire will randomly sample from that distribution once for every node in the
network. Once all of the nodes have been assigned a degree, EpiFire does its best to find a way to randomly
connect them given those degrees.

EpiFire will not allow nodes to be connected to themselves, and no pair of nodes can be connected more
than once. This means that some degree distributions and sets of degrees cannot produce a valid
network. To understand why, imagine that you have a network of five nodes, and one has a degree of six.
Since each node can have at most four neighbors, this network cannot be connected. Similarly, a network
of three nodes, where each node has a degree of one cannot be connected—one node will be left without a
neighbor.

1This software is described formally in T. J. Hladish, E. Melamud, L. A. Barrera, A. Galvani, and L. A. Meyers. EpiFire:
An open source C++ library and application for contact network epidemiology. BMC Bioinformatics, 13(76), May 2012.



You can choose among the following degree distributions2:

1. Poisson(lambda):

Pr{degree = x} = λxe−λ

x!

The Poisson distribution is observed in Erdős-Rényi random networks. Lambda is both the mean
value and the variance of this distribution; if lambda is less than 3, there will be many nodes with
small degree and a few with large degree; once lambda is greater than about 10, the distribution is
bell-shaped (approximately Gaussian).

2. Exponential(beta):

Pr{degree = x} = βe−βx

Exponential distributions always have more nodes with degree 1 than any other. The distribution
starts at beta on the y-axis, and asymptotically approaches zero on the x-axis. The larger beta gets,
therefore, the lower the mean degree becomes. EpiFire uses a truncated exponential distribution so
that you don’t end up with any disconnected (degree zero) nodes.

3. Power law(alpha, kappa) with exponential cutoff:

Pr{degree = x} = x−αe−x/κ

Power law distributions generally have more nodes with degree 1 than any other. Power law distribu-
tions have long right tails; κ determines how quickly the tail tapers. The mean of the resulting degree
distribution will vary with κ, and inversely with α.

4. Urban

The urban degree distribution3 is a semi-empirical distribution (with mean ≈ 16.7) intended to describe
the spread of a respiratory pathogen in an urban population.

5. Constant(fixed degree)

If all nodes have the same degree (called a degenerate distribution) and are randomly connected, the
resulting network is said to be a random regular network. Note that the algorithm used by EpiFire to
produce random regular networks is only efficient if the desired degree is small relative to the number
of nodes. If you want to create a complete graph, where all nodes are connected to all others, this is
best done by choosing the Poisson distribution and setting lambda equal to network size - 1.

6. Small world

Watts and Strogatz (1998)4 described a class of networks that have high clustering and low average
shortest path length. In non-technical terms, high clustering means that the network has a lot of
triangles; in real life, this is like saying that your friends generally know each other. If a network has

2Poisson, exponential, and power law distributions are right-truncated at network size - 1 since that’s the largest possible
degree, or as soon as the normalized probability of a given degree drops below 10−15. Continuous distributions are discretized
by evaluating the PDF at integer values and then normalizing.

3based on data from Meyers LA, Pourbohloul B, Newman MEJ, Skowronski DM, Brunham RC: Network theory and SARS:
predicting outbreak diversity. J Theor Biol 2005, 232:7181.

4Watts DJ, Strogatz SH: Collective dynamics of small-world networks. Nature 1998, 393:440442.



a low average shortest path length, this means that individuals tend to be connected by surprisingly
few intermediaries.

Watts-Strogatz small-world networks are parameterized with the mean degree k and the fraction of
edges to be shuffled p. Initially, all nodes are connected to form a ring, where every node is connected
to its k nearest neighbors. With probability p, each edge is randomized.

Network source: Load from file

Networks can be imported into EpiFire as comma-, space-, or tab-delimited files. The default is to use the
comma-delimited or “comma separated value” (CSV) format. Each line in the file represents either a node
or a pair of nodes, connected by an edge. Consider the following edge list:

A,B

C,B

C,A

D

When imported, this would connect nodes A, B, and C in a triangle, and node D would be added to the
network but would have no edges. Order is not important, since EpiFire currently supports only undirected
networks. Note that node names are taken to be unique, so a node will only be created the first time its
name appears in the file, but edges are not unique; including A,B and B,A in the file would result in the
nodes being connected by two edges.

Node names may contain any characters except commas and end-of-line characters. Extra whitespace
(spaces, tabs, readlines, and newlines) before and after node names are stripped and ignored.

If EpiFire has a network loaded that is from a file, the “Number of nodes” line will display the size of
the network, and the source filename will be shown; if the network is deleted or replaced with a generated
network, these values are reset.

2.2 Design a simulation

Once a network is either generated or loaded from a file, you can simulate an epidemic on that network.
All simulations work in the same fundamental way: Initially everyone in the network is susceptible. One or
more individuals are randomly selected to become infectious; pathogens spread probabilistically from these
individuals along the network structure, infecting and spreading from others in turn. Infectious individuals
eventually recover and resist being reinfected. The epidemic ends when the last infectious person recovers.
Currently EpiFire only supports the susceptible→ infectious→ recovered progression of states.

Simulation types

EpiFire supports two types of epidemic simulations: percolation and chain binomial. Both types, if param-
eterized properly, will predict exactly the same distribution of final epidemic sizes. Percolation simulations
are somewhat faster and accurately predict who will get infected, but not when exactly an individual is
likely to get infected, or which neighbor that transmission came from. Percolation epidemic curves have
simulation steps, sometimes called epidemic generations, as “time” units, which may be hard to interpret as
conventional time units.

Chain binomial simulations, on the other hand, are more computationally intensive but can accurately
predict chains of transmission (who infected whom). Chain binomial epidemic curves have time units that
correspond to the units of the infectious period parameter; in other words, if the infectious period is 5 days,
then the epidemic curve time unit is “days.”



Here is a table summarizing the differences between percolation and chain binomial simulations:

Percolation Chain binomial
Parameters transmissibility TP infectious period d, transmissibility TCB
Predicts final epidemic size yes yes
Predicts epidemic probability yes yes
Predicts epidemic curve approximately with resolution of infectious period units
Predicts chain of transmission no yes
Number of times edges are tested 1 equal to infectious period d
Transmissibility TP = 1− (1− TCB)d per time-step probability TCB
Running time faster up to d times slower
Time step units simulation steps infectious period units

Figure 1: Comparison of percolation and chain binomial simulations

Infectious period (chain binomial only) and transmissibility

The infectious period parameter is the length of time that individuals will remain infectious. It is numerically
equal to the maximum number of times an edge between an infectious and susceptible pair of individuals is
tested for transmission. If a given pathogen has an infectious period of 1 week, that can be expressed as 1
(week), 7 (days), 168 (hours), etc.; the transmissibility (per time–step probability of transmission) must be
adjusted accordingly, and whatever units you use are the units of the epidemic curve horizontal axis. The
conversion is as follows:

TCB,f = 1− (1− TCB,d)d/f

where TCB,f is the transmissibility for an infectious period divided into f time steps, and TCB,d is
the original transmissibility when using d time steps. When f is 1, this calculation yields the percolation
transmissibility.

Expected R-zero

R-zero, called the basic reproductive rate, is the expected number of secondary infections caused by each
infection early in an epidemic. If R-zero is less than 1, we would predict that an epidemic cannot occur. As
R-zero increases, epidemics tend to become larger and more probable, although they can still stochastically
fail to occur, or even deterministically fail to occur if the initial infection is introduced outside of the giant
network component, e.g. in a disconnected node.

EpiFire provides the expected R-zero calculation5 based on the degree distribution of the network in
memory, and TP or TCB,1 (these are equivalent). It provides one basis for comparing different sets of
parameters.

Initially infected

This is the number of infectious individuals that will begin the epidemic. Nodes are selected randomly
without replacement. Generally, as this number increases, the probability of an epidemic also increases,
given that the expected R-zero is greater than 1.

Number of runs

Although you are welcome to click “Run Simulation” every time you want to run a simulation, sometimes
you might want a little more automation. When you click “Run Simulation,” this parameter determines

5calculated as in Meyers LA: Contact network epidemiology: Bond percolation applied to infectious disease prediction and
control. Bull Am Math Soc 2007, 44:6386.



how many repetitions will be performed.

Retain data between runs

If you do not wish to accumulate data as you run the simulator, uncheck this box.

2.3 Log window

The large text box on the lower left side is where all important messages will end up about the status of
EpiFire.

2.4 Profit!

Now that you have selected a network and a simulation, this is where the buttons are located that allow you
to control what happens next. The “Generate Network” and “Import Edge List” buttons are only displayed
when “Generate” and “Load from file,” respectively, have been selected in the “Network source” drop-down
menu.

Button Function
Clear Network Delete the network in memory
Clear Data Delete all generated data
Analyze network See section 2.6
Draw network Render the network as image ( < 104 nodes; < 103 recommended)
Generate network Generate a new network, replacing any previous network
Import Edge List Open file dialog to import a network from a CSV file
Run Simulation Conduct the specified simulation on the network in memory

Figure 2: Control panel buttons

2.5 The data plots

On the right side of the application window are three boxes; this is where the data plots are drawn if you
have run simulations. The plots can be resized by resizing the application window, and by clicking and
dragging the horizontal dividers between the plots.

All plots can be exported as PNG files by double-clicking on the plot. Data used to generate
the plots can be exported as CSV files by right-clicking the plots.

All example plots below were created using a Poisson(5) network of 10,000 nodes, and a chain binomial
simulation with infectious period = 5, transmissibility = 0.06, number initially infected = 3, and 100 runs.



Node state plot (top)

Figure 3: A node state plot

This plot displays the progression of disease states from the most recent simulation run for 100 arbitrarily
selected nodes in the network. Each node is represented by one row; time progresses from left to right. Blue
represents susceptible; red, infectious; and yellow, recovered. The scale of the horizontal axis is the same as
the range of the most recently generated epidemic curve. In other words, this plot shows what a sample of
nodes experienced during the epidemic shown in red in the epidemic curve (middle) plot. If your network
has fewer than 100 nodes, the bottom portion of this plot will be solid blue.

Epidemic curve plot (middle)

Figure 4: An epidemic curves plot

This is usually the most interesting view of the simulation results. An “epidemic curve” is a time series
describing how many nodes were in the infectious state at each point in time. The vertical axis is an absolute
count of individuals, and the horizontal axis is in time steps; for chain binomial simulations, the units are
the same as for the infectious period, while for percolation simulations the units are simulator steps.

The most recent simulator run is plotted in solid red. Past runs are displayed in semi-transparent gray;
as more data accumulates, the gray becomes more transparent. In this way, past runs effectively produce a
density plot, showing you both the range of possible epidemic curves, while the most probable trajectories
are the darkest.

Note: since chain binomial and percolation simulations produce epidemic curves that cannot be compared,
the epidemic curve plot is cleared when you change simulation types.



Epidemic size histogram (bottom)

Figure 5: Histogram of final epidemic sizes

The histogram of epidemic sizes displays the distribution of final epidemic sizes. The horizontal axis is
divided into bins representing ranges of epidemic sizes; the vertical axis is the number of observed epidemics
within each bin. This plot doesn’t become interesting until you have performed several simulation runs,
since the data cannot be divided into more bins than the number of data points.

The epidemic size histogram can be particularly useful in estimating the frequency of successful versus
failed epidemics. If the histogram is strongly bimodal after performing many repetitions, this is a likely
explanation.

2.6 Network analysis

Since network structure plays such an important role in determining what happens when a pathogen is
introduced to a population, it is useful to be able to calculate some basic network statistics. By clicking the
“Analyze Network” button, you can open the network analysis dialog.

Network statistics

While it is beyond the scope of this tutorial to explain how each statistic is calculated, here is an interpre-
tation:

Statistic Interpretation
Node count number of nodes in the network
Edge count number of edges in the network
Mean degree average number of neighbors each node has
Largest component number of nodes in the largest interconnected region of the network
Component count number of disconnected regions of the network
Transitivity clustering coefficient; one measure how independent node connections are
Diameter length of the shortest path between the most distant pair of nodes
Mean shortest path average shortest path among all pairs of nodes

Figure 6: Control panel buttons

Since path length is undefined for nodes that are in separate components, the diameter and mean shortest
path statistics are calculated using only the nodes in the largest component.



Figure 7: Degree distribution for a Poisson(5) network with 10,000 nodes

Degree distribution plot

A node’s degree is the number of edges it has; by counting the number of nodes having each possible degree,
we can determine the degree distribution. In this histogram, the horizontal axis is the degree, and the vertical
axis is the number of nodes having that degree. As with the other plots, this plot can be saved as a PNG
by double-clicking, and the data used to generate the plot can be saved by right-clicking.

3 EpiFire exercises

3.1 Explore

Before we start doing real exercises, take a look around. Click “Generate Network,” then click “Run Simu-
lation” a few times. Try changing some parameters, and see what effect they have. Remember, if you want
to clear the plots, click “Clear data,” and if you want to do a bunch of simulations quickly, try changing the
simulation type to “Percolation,” and change the number of runs to a bigger number.

You can also use ”Draw network” to visualize some smaller networks (probably < 103 nodes, depending
on your computer) and simulations. Mouse scrolling or +/- will zoom in/out, holding ENTER or RETURN
causes the layout optimization algorithm to continue running, and you can drag around with your mouse.
You can drag multiple nodes by drawing a box around them first with your mouse.

3.2 Poisson vs power law

Let’s investigate the effects of having a more homogeneous degree distribution (Poisson), versus a more
heterogeneous one (power law). For this exercise, switch the simulation type to “percolation,” since we will
only be looking at final epidemic size; this will speed things up.

Generate a 10,000 node power law network with alpha = 1.5 and kappa = 100.

• What is the expected R-zero?

• Does this mean that epidemics are possible?

• Run this 100 times, by editing the “Number of runs” box. What fraction of the time does an epidemic
result? This is the number of runs in the right-hand mode of the histogram, divided by the number of
runs you did.

• When epidemics do occur, how big do they tend to be?

Let’s find a Poisson-distributed network that has the same (or very similar) R-zero, keeping transmis-
sibility the same. To do this, make note of the value of R-zero for your power law network, and then try



adjusting the value of lambda higher or lower, in order to get at least the first two digits of R-zero to match.
In order to generate a new network and recalculate R-zero, click “Generate Network.”6

• Clear the plots by clicking “Clear data.” Now do 100 more runs with the Poisson network. What
fraction of the time does an epidemic result?

• When epidemics occur in the Poisson network, how big are they?

• In this exercise, we have kept the expected R-zero the same; this means that the critical transmissibility
for the two networks is the same. What does R-zero tell you? What doesn’t it tell you? When
parameterized to have the same critical transmissibility, are epidemics bigger on a homogeneous or a
heterogeneous network?

• Which is a better approximation of a classical mass-action model, and why? By modifying the degree
distribution and network size, we can still do better than these networks if we are trying to approximate,
for example, a classical S-I-R model. What should those changes be?

3.3 Is the urban network a good model for influenza?

Meyers et al. (2005) created the urban network model with SARS in mind, but other respiratory diseases like
influenza likely have similar modes of transmission. Since the same contacts between people are important,
it is reasonable to think that the underlying network structure will be similar. Let’s see whether that seems
to be the case.

Select “Urban” from the degree distribution menu, and generate a network of 10,000 nodes. Select
“percolation” as the simulation type, and change the transmissibility value until the expected R-zero is
approximately 1.1. This is an appropriate value of Re (the effective reproduction number) for seasonal
(non-pandemic) influenza.7

Now, how will we determine if this is a good network to use for influenza? As you saw in the last exercise,
using a particular R-zero value is no guarantee that epidemics will occur with a certain probability, or be
of a certain size. In a typical year 5-15% of the United States becomes infected each year with influenza.
Remember, that is averaging urban and rural areas, and populations that did not experience an epidemic
with those that did, so the average for a city is likely to be somewhat higher.

• Do 1000 simulation runs with the transmissibility value you chose. How big are the epidemics that
occur?

• How frequently do epidemics occur?

The frequency of these epidemics is a problem: real urban populations experience influenza epidemics
in most years. One solution is to introduce more infections in the beginning by changing “initially in-
fected”—this is the number of randomly selected individuals that spark the epidemic. Change the number
initially infected so that epidemics occur at least 80% of the time.

Think about why changing the initial number of infected individuals has this effect. What is the effect
when the network is a single component? What about when the network has many components, perhaps
one giant component and many small ones?

Finally, try a similar process with other degree distributions. Are there others that can reproduce
reasonable epidemics, given an R-zero value of 1.1?

6Hint: The correct lambda should have a value between 50 and 60.
7Strictly speaking, R0 is the reproduction number for fully susceptible populations, but seasonal influenza does not circulate

on fully susceptible populations because many people have some immunity from natural infection and from vaccination. The
reproduction number we observe, Re, is from an epidemic spreading on a more complicated network than what are modeling
here, one where transmissibilities depend on immune state.



3.4 Identifying epidemics

We all have some notion of what we mean by the word epidemic, but a precise definition that applies across
all areas of epidemiology is not possible. In stochastic network models, epidemics might fail to occur when
they are likely, and if a highly-connected individual is infected early on, a large number of people might
become infected even if the expected R-zero is less than 1.

Practically speaking, if 8 people become infected in a population of 10,000, we would not call that an
epidemic. If 80% of those 10,000 people become infected, that is definitely an epidemic. What if it is 8
people, or 80% of a population of just 10? The way we think about epidemics is somehow connected to
population size.

• Generate a 100-node network using the urban degree distribution, and select a percolation simulation
with transmissibility = 0.07. Run 1,000 (or more) simulations. What fraction of simulations would
you say resulted in an epidemic? Click ”Simulation results analysis” in the Results menu to open the
results analysis dialog. Make note of the mean number infected in all simulations. If you would say
that some epidemics occurred, adjust the outbreak/epidemic threshold accordingly, and make note of
mean number infected in outbreaks and in epidemics, respectively.

• Click ”Clear data” in the main application window to remove these results, and repeat the exercise
for a 1,000-node network, keeping all other settings the same. What fraction of simulations resulted
in an epidemic? You should have observed some epidemics: adjust the outbreak/epidemic threshold if
necessary, and make note of mean number infected in outbreaks and in epidemics. Calculate the mean
fraction infected in epidemics and write it down.

• Click ”Clear data” in the main application window to remove these results, and repeat the exercise
one more time for a 10,000-node network. What was the mean number infected in outbreaks, and the
mean fraction infected in epidemics?

• What generalizations can you make about how changing population size affects:

– The number of people and fraction of population infected in an outbreak (non-epidemic)?

– The number of people and fraction of population infected in an epidemic?

• Let’s look at one more scenario: clear the data, and generate a new 1,000-node network, but this time
change the transmissibility to 0.05 and the number initially infected to 50. What is the expected R-
zero? Should epidemics be possible? Run 1,000 simulations. How does the mean number and fraction
infected compare to the runs with the 1,000-node network and a higher transmissibility? Having
multiple introductions, each producing an ”outbreak” can make it difficult to say what we would call
an epidemic. A theorist might say no epidemics occurred, while a public health official might say
epidemics always occurred. If you repeat this exercise with a large population, however, you should
find that the number infected does not increase proportionally.

Using analytical methods from network epidemiology, we can sometimes calculate the expected final size
for an infinite population, and that may provide some guidance when choosing what to call an epidemic in
a stochastic setting. If it is unclear from examining results what should be called an epidemic, it may help
to vary the population size to see how dynamics changed.

3.5 What drives stochasticity?

Stochasticity is an important topic in epidemiology, in large part because of our desire to plan ahead and
respond appropriately for potential epidemics. Sometimes, the problem is a lack of good information—you
can’t predict something you don’t know about—and other times, even with good information, prediction is
very difficult, and therefore appropriate intervention is as well. To illustrate the difference, consider that
I cannot predict where the planets will be in the night sky one month from now (I personally lack the
information), even though their movement can be easily predicted; on the other hand, weather forecasters
struggle to predict next month’s forecast even with huge amount of information regarding current weather
patterns and past trends.

Let’s examine some stochastic phenomena in EpiFire.



• Click “Default settings” and “Clear data.” Generate the default network, a Poisson(5) network with
10,000 nodes.

• Click “Run simulation” several times.

Notice that epidemics, when they occur, have a smooth bell shape. The epidemic curve looks like it could
have been generated using a differential equation model. The epidemics don’t, however, always occur at the
same time. Change the number “Initially infected” to 20, and run several more simulations.

• What happened?

• Are epidemics bigger?

• Is the timing different?

• Are they more predictable or less predictable?

Change the Poisson parameter lambda to 4. This reduces the average number of neighbors each nodes has
by 1. Generate a new network, and run several simulations. Are there major differences?

Now change the Poisson parameter to 3. Generate a new network, and run several simulations. What
change do you observe now? If you haven’t done so already, try clearing all of the previous data (to clear
the plots), and run several more simulations.

Continue to investigate how parameters affect stochasticity and the predictability of epidemics. What
changes have a big impact?

3.6 Exploring a novel network

One exciting aspect of network modelling is studying the properties of novel empirical networks. Sometimes
the intuition we develop from studying idealized, mathematically-friendly networks is confirmed, and other
times we are pushed to develop new methods and metrics. This exercise is intended to be open-ended and
a little bit challenging.

Download mystery_net.csv and import the edge list into EpiFire. This mystery network is based on
actual interactions between people. Later you will learn the source and how it was constructed, but for now,
please investigate the network without preconceptions.

First, answer some basic questions:

• How big is the network?

• What is the mean degree?

• What is the minimum and maximum degree? [NB: One simple, if inelegant, way to determine this is
to look at the range of the degree distribution plot in the network analysis dialog.]

• How would you characterize the degree distribution?

• How many components are there?

• This is a big enough network that it’s not worth trying to calculate the diameter and mean shortest
path of the largest component.

Hypothesize a little:

• What kinds of mundane interactions would or would not plausibly fit the information you have so far?

• What plausible explanations are there for the existence of multiple components?

Simulate some epidemics: Try a chain binomial simulation with infectious period = 5, transmissibility =
0.05, initally infected = 5, and number of runs = 1. Click “Run Simulation” until you have seen at least 10
epidemics.



• Are these curves smooth, or noisy/stochastic? Does that match your expectations given the expected
R-zero value?

• Did you observe any surprising features in the epidemic curves? (If not, talk to me!)

• How do the observed epidemics compare with the predicted epidemic sizes under the mass action and
network models?

• What kind of network properties could lead to epidemic sizes and dynamics and like those you observed?

• How would you test your hypotheses?

• Explore other parameter values and see how the dynamics change.


