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Who are we?

I Joel C. Miller:
I Former math and biology faculty at Penn State and later

Monash University (Melbourne).
I Now senior research scientist at Institute for Disease Modeling
I Co-author of “Mathematics of Epidemics on Networks”:

http://bit.ly/EpidemicSonnetWorks
I Developer of python package EoN: http:

//epidemicsonnetworks.readthedocs.io/en/latest/
I 8th year teaching this course.

I Thomas J. Hladish
I Biology and Emerging Pathogens Institute faculty at the

University of Florida
I Developer of C++ EpiFire, AbcSmc packages:

https://github.com/tjhladish/
I 10th year teaching this course
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Layout of course

The course will consist of a mixture of theory and computer labs.

I Theory
I Properties of diseases and networks
I Analytic predictions of disease behavior

I Computer Lab
I Python and EpiFire-based stochastic simulation of epidemics

on networks.

I Notes are available at http://sismid.hladish.com
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Disease spread

Two features primarily determine population-scale disease spread:

I Population structure.

I Immune response / natural history.
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Immune response
Immune response determines result of individual’s exposure and
whether onwards transmission occurs.

Possible outcomes:

I Remains infected forever: SI

I Gains permanent immunity: SIR

I Recovers but can be reinfected: SIS

I Recovers with temporary immunity: SIRS
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I Remains infected forever: SI

I Gains permanent immunity: SIR

I Recovers but can be reinfected: SIS

I Recovers with temporary immunity: SIRS

S I

HIV, Tuberculosis (without treatment), Hepatitis (sometimes),

7 / 52



Immune response
Immune response determines result of individual’s exposure and
whether onwards transmission occurs.

Possible outcomes:

I Remains infected forever: SI

I Gains permanent immunity: SIR

I Recovers but can be reinfected: SIS

I Recovers with temporary immunity: SIRS

S I R

Measles, Mumps, Rubella, Pertussis, . . .
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whether onwards transmission occurs.

Possible outcomes:

I Remains infected forever: SI

I Gains permanent immunity: SIR

I Recovers but can be reinfected: SIS

I Recovers with temporary immunity: SIRS

S I

Many parasites (e.g., lice), Many bacteria, Many STDs, . . .
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Immune response determines result of individual’s exposure and
whether onwards transmission occurs.

Possible outcomes:

I Remains infected forever: SI

I Gains permanent immunity: SIR

I Recovers but can be reinfected: SIS

I Recovers with temporary immunity: SIRS

S I R S

Dengue (sort of), Pertussis, Influenza (because of genetic drift of
virus).
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Lots of things to think about

For SIR, we are typically interested in

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected (better named the
attack ratio)

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS, we are typically interested in

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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Simple Compartmental Models

I Continuous time or Discrete time

I Usually SIR or SIS

The major assumptions:

I Every individual is average.

I Every interaction of u is with a randomly chosen other
individual.

I The probability an interaction is with a susceptible [infected]
individual is S/N [I/N]

We will analyze compartmental models in detail later to provide
context for network models.
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What is a contact network?

A network is a collection of individuals joined together based on
interactions that may spread the disease in question.
These connections (edges) may be:

I Transient (sex workers or random encounter in crowded
market)

I Weighted (sharing an office versus brief daily conversation)

I Clustered

(. . . Cause your friends are my friends and my
friends are your friends, . . . )

I Heterogeneously distributed

I Directed

I . . .
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Other important types of networks

The nodes don’t have to be individuals. They can be communities.

I Airline network

I Connected communities

I Livestock movement

I . . .
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Network definition

I A network is a collection of nodes which are joined into pairs
by edges.

I Two nodes that are joined together are called neighbors. The
number of neighbors a given node has is its degree, k .

I There is no real difference between the definitions of
“network” and “graph”.

I I will tend to use the terminology “partner” for neighbor and
“partnership” for “edge” [the term “contact” is also
commonly used but can be ambiguous].
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Network Properties
There are a number of things we can measure:

I Degree distribution: P(k), the proportion of nodes with
degree k.

I Clustering: frequency of short cycles [not common in sexual
networks].

I Partnership duration: Network may be dynamics, with
partnerships changing in time. Individuals may enter/leave the
population.

High degree nodes tend to be infected early and in turn infect
more nodes. So the early growth is more affected by the presence
of high-degree nodes than by the average degree.
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I Clustering: frequency of short cycles [not common in sexual
networks].

I Partnership duration: Network may be dynamics, with
partnerships changing in time. Individuals may enter/leave the
population.

Clustering tends to slow the spread of a disease, but often does not
significantly affect whether a disease occurs or how large it gets.
Its role is reduced as typical degrees increase.
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I Degree distribution: P(k), the proportion of nodes with
degree k.

I Clustering: frequency of short cycles [not common in sexual
networks].

I Partnership duration: Network may be dynamics, with
partnerships changing in time. Individuals may enter/leave the
population.

Changing partnerships reduces the effect of local “susceptible
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More Network Properties
There are a number of things we can measure:

I Edge weights: some edges may have higher transmission
probabilities than others.

I Assortativity: Individuals may actively select similar partners.
In particular, partners with similar degree.

I Modularity: some parts of the network may be more densely
connected than others.

Edge weights and many other effects are generally less significant
(but what if weights inversely correlated with degree?)
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I Edge weights: some edges may have higher transmission
probabilities than others.

I Assortativity: Individuals may actively select similar partners.
In particular, partners with similar degree.

I Modularity: some parts of the network may be more densely
connected than others.

Assortative mixing by degree tends to make it easier for a disease
to get established because the core of high-degree nodes provides a
good place to spread. However, it often reduces the total size of
the epidemic because the low degree nodes tend to connect only to
low degree nodes.
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More Network Properties
There are a number of things we can measure:

I Edge weights: some edges may have higher transmission
probabilities than others.

I Assortativity: Individuals may actively select similar partners.
In particular, partners with similar degree.

I Modularity: some parts of the network may be more densely
connected than others.

The existence of subcommunities may influence how a disease
spreads (and when it is detected).
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A preliminary glance at SIR disease in networks

I To give context to our first computer simulations, we take a
preliminary look at SIR disease in a simple network.

I We take a very simple network: 4 nodes in a line.

I We take a very simple SIR disease: in a time step nodes
transmit to neighbors with probability p and then recover with
immunity.
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Modeling Disease Spread in a network
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Alternative perspective

I
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At each step, if there
is an edge to cross, it
is crossed with probabil-
ity p. No edge is ever
crossed twice.

I It is equivalent to decide in advance whether the edges will be
crossed if encountered.

I
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Random networks

We rarely have exact data about a population’s contact structure.
Instead we have measurements of a few important features.

I We want to generate a random network that captures these
properties.

I If these properties are the relevant properties, then disease
spread in the simulated network will accurately reproduce
dynamics in the real population.

I Ideally we can analytically predict the dynamics in the model
network.

I An interesting challenge [outside our scope] is finding ways to
generate random networks with specified properties which are
analytically tractible.
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Common random network models

I Small World networks

I Barabási-Albert

I Configuration Model

⇐ Analytically Tractible

I Exponential Random Graph Model [ERGM]
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Small-world networks

I Start with nodes in a ring and connect nearby pairs.
I Rewire a fraction p of the edges.
I The resulting network has short typical path lengths and high

“clustering”.
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Epidemics in Small-world networks: theory vs simulation

(theory to come later)
SIR:
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Epidemics in Small-world networks: theory vs simulation

(theory to come later)
SIS:
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Barabási–Albert networks

I Start with m + 1 nodes all connected to each other.

I Add a node, connect it to m previously existing nodes

I Repeat, each time selecting the previously existing nodes with
probability proportional to their degree.
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Epidemics in BA networks: theory vs simulation

(theory to come later)
SIR:
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Configuration Model

Probably the simplest model capturing a heterogeneous degree
distribution:

7→ 7→ 7→

7→ 7→ 7→ · · · 7→
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Implementation of Configuration Model networks

I Given N nodes and a degree distribution.

I Assign each node u a degree ku. If sum is odd, start over.

I Create a list L and place each node u into L ku times.

I Randomly shuffle L.

I For each consecutive pair of nodes in L, place an edge.

What can go wrong?
Create the graph at the last step:
L = [7, 6, 5, 6, 2, 2, 4, 7, 1, 3, 6, 5, 4, 5]
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Density of “short” cycles is small for large N
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Configuration model networks, all degrees equal 4.
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Density of “short” cycles is small for large N
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“Annealed” Configuration Model

7→

I The annealed network version assumes that at every moment
the network looks like a Configuration model network.

I However, at every moment, an individual changes all of its
partners.

I In practice this is appropriate if partnerships are so short or
disease transmission so rare that an individual is unlikely to
ever transmit to the same individual twice or transmit back to
its infector.

I People who use the term “annealed network” call the static
version a “quenched network”.
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Exponential Random Graph Model (ERGM)

I Given some vector of parameters θ and statistical
measurements s on a graph G , choose G with probability
proportional to

exp[θ · s]

I Generally a network is chosen through MCMC.

I Computational power significantly constrains the network size
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Do your friends have more friends than you do (on
average)?

Given a configuration model network G with a heterogeneous
degree distribution:

If we choose a random individual in a configuration model network,
is its expected degree

1. higher

2. lower

3. the same

4. depends on the degree distribution

than the expected degree of a random partner?
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Size Bias
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Size Bias

I A random individual has degree k with probability P(k)

I What about a random partner? What is Pn(k), the
probability a partner has degree k?

I Because of how partners are selected, a random partner is
likely to have higher degree than a random individual [1, 2].

I Consider a node and choose one of its stubs.

I it will join to one of the other N 〈K 〉 (approximately) stubs.
I The number of stubs belonging to degree k individuals is

NkP(k).
I So Pn(k) =NkP(k)/N 〈K 〉 = kP(k)/ 〈K 〉 where 〈K 〉 is the

average degree.

I A partner’s partner also has degree k with probability Pn(k).
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Size Bias

I cannot stress enough that if P(k) is the probability a random
individual has k partners, then

Pn(k) = kP(k)/ 〈K 〉

is the probability a random partner has k partners.
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Social networks

I facebook

I linkedin

I twitter

I . . .

These may be more appropriate for spread of ideas or opinions.

40 / 52



Contact networks

I The network of physical interactions.

I Often highly clustered.

I Appropriate for respiratory diseases.

I Sometimes measured by giving people devices that measure
physical proximity.
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Sexual networks

I Appropriate for sexually transmitted diseases.

I Often low clustering.

I Often highly heterogeneous.

I Transient partnerships may play a large role.

42 / 52



Location–Location networks

I Cities connected by travel of people between them [spread of
H1N1, Ebola].

I Farms connected by movement of animals [foot and mouth].

I Habitats connected by bird migrations [West Nile].
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Empirical networks
A number of attempts have been made to measure networks in
“the wild”. Each case has its own peculiarities. This list is a little
dated.

I Polymod [3]: 7290 participants across 8 European countries
recorded information about their contacts during a day.

I Hospital interactions [4]: Employees, patients, and visitors at
a pediatric hospital in Rome wore proximity detectors over a
week-long period.

I School interactions [5]: Students and employees at a high
school wore proximity detectors.

I Tasmanian Devils [6, 7]: Contacts between Tasmanian Devils
were measured through collars with proximity detectors.

I Lion interactions [8]: observations of within pride, between
pride, and nomadic lion interactions.

I Other wildlife [9].

I Romantic networks [10]
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Sample location–location networks

I Livestock movement between farms [11] (and many ongoing
studies).

I Patient movement between hospitals: movement of patients
in Orange County [12], movement of patients in The
Netherlands [13].

I Individual movement between wards within a hospital [14]
(and others that I recall seeing, but can’t find).

I Travel through airline networks [15] (and many other papers
by Colizza and Vespignani).

I Seasonal population movements [16]: study of seasonal
population movements for malaria control (phone data,
census, satellite imagery).
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Agent-based models
A number of groups have done large-scale simulations of
populations

I Institute for Disease Modeling [DTK].

I Vancouver [17]: Simulations of individual contacts within the
city of Vancouver (N)

I EpiSims [18]: Simulation of all individual movements through
Portland, OR (1.6 million people). Later extended to a large
number of other cities/regions (≈ 17 million).

I Epicast (based on “Scalable Parallel Short-range Molecular
dynamics”: SPASM) [19]: Simulation of individual movement
throughout the US (≈ 300 million).

I Thailand [20]: Simulated individual interactions in Thailand
with the goal of identifying strategy to control pandemic
influenza (500000 people).

I South Africa: Simulation by George Seage’s group at HSPH
for HIV transmission (≈ 6 million?)

46 / 52



Agent-based models
A number of groups have done large-scale simulations of
populations

I Institute for Disease Modeling [DTK].

I Vancouver [17]: Simulations of individual contacts within the
city of Vancouver (N)

I EpiSims [18]: Simulation of all individual movements through
Portland, OR (1.6 million people). Later extended to a large
number of other cities/regions (≈ 17 million).

I Epicast (based on “Scalable Parallel Short-range Molecular
dynamics”: SPASM) [19]: Simulation of individual movement
throughout the US (≈ 300 million).

I Thailand [20]: Simulated individual interactions in Thailand
with the goal of identifying strategy to control pandemic
influenza (500000 people).

I South Africa: Simulation by George Seage’s group at HSPH
for HIV transmission (≈ 6 million?)

46 / 52



Agent-based models
A number of groups have done large-scale simulations of
populations

I Institute for Disease Modeling [DTK].

I Vancouver [17]: Simulations of individual contacts within the
city of Vancouver (N)

I EpiSims [18]: Simulation of all individual movements through
Portland, OR (1.6 million people). Later extended to a large
number of other cities/regions (≈ 17 million).

I Epicast (based on “Scalable Parallel Short-range Molecular
dynamics”: SPASM) [19]: Simulation of individual movement
throughout the US (≈ 300 million).

I Thailand [20]: Simulated individual interactions in Thailand
with the goal of identifying strategy to control pandemic
influenza (500000 people).

I South Africa: Simulation by George Seage’s group at HSPH
for HIV transmission (≈ 6 million?)

46 / 52



Agent-based models
A number of groups have done large-scale simulations of
populations

I Institute for Disease Modeling [DTK].

I Vancouver [17]: Simulations of individual contacts within the
city of Vancouver (N)

I EpiSims [18]: Simulation of all individual movements through
Portland, OR (1.6 million people). Later extended to a large
number of other cities/regions (≈ 17 million).

I Epicast (based on “Scalable Parallel Short-range Molecular
dynamics”: SPASM) [19]: Simulation of individual movement
throughout the US (≈ 300 million).

I Thailand [20]: Simulated individual interactions in Thailand
with the goal of identifying strategy to control pandemic
influenza (500000 people).

I South Africa: Simulation by George Seage’s group at HSPH
for HIV transmission (≈ 6 million?)

46 / 52



Agent-based models
A number of groups have done large-scale simulations of
populations

I Institute for Disease Modeling [DTK].

I Vancouver [17]: Simulations of individual contacts within the
city of Vancouver (N)

I EpiSims [18]: Simulation of all individual movements through
Portland, OR (1.6 million people). Later extended to a large
number of other cities/regions (≈ 17 million).

I Epicast (based on “Scalable Parallel Short-range Molecular
dynamics”: SPASM) [19]: Simulation of individual movement
throughout the US (≈ 300 million).

I Thailand [20]: Simulated individual interactions in Thailand
with the goal of identifying strategy to control pandemic
influenza (500000 people).

I South Africa: Simulation by George Seage’s group at HSPH
for HIV transmission (≈ 6 million?)

46 / 52



Agent-based models
A number of groups have done large-scale simulations of
populations

I Institute for Disease Modeling [DTK].

I Vancouver [17]: Simulations of individual contacts within the
city of Vancouver (N)

I EpiSims [18]: Simulation of all individual movements through
Portland, OR (1.6 million people). Later extended to a large
number of other cities/regions (≈ 17 million).

I Epicast (based on “Scalable Parallel Short-range Molecular
dynamics”: SPASM) [19]: Simulation of individual movement
throughout the US (≈ 300 million).

I Thailand [20]: Simulated individual interactions in Thailand
with the goal of identifying strategy to control pandemic
influenza (500000 people).

I South Africa: Simulation by George Seage’s group at HSPH
for HIV transmission (≈ 6 million?)

46 / 52



Introduction

Disease spread

Key Questions

Modeling approaches

Networks

Brief glance at SIR in networks

Random network models

Real world networks

Review

References

47 / 52



Review

I Disease dynamics depend on immune response and population
structure

I Simple SIR disease can be modeled through percolation.

I We will focus on “Configuration model” populations and hope
that they are close enough to real populations.

I There is a size-biasing effect by which higher degree nodes are
more likely to be infected early on and then transmit to more
nodes.
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