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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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Simple Compartmental Models
The most common models are compartmental models.

I Continuous time or Discrete time

I SIR or SIS

The major assumptions:

I Every individual is average.

I Every interaction of u is with a randomly chosen other
individual.

Throughout:
S + I + R = N

[That is, we look at absolute number rather than proportions of
the population. Unfortunately this is standard across much of the
field and it causes our equations and initial conditions to be
littered with Ns that do nothing to help us understand what is
happening. I haven’t used this convention in past years’ notes, so
there may be typos occassionally. I’ve given up fighting this.]
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Continuous time: Kermack–McKendrick

SIR:

β 〈K 〉 IS
N γI

S I R

SIS:

β 〈K 〉 IS
N

γI

S I

Assumptions:

I Individuals recover with rate γ.
I Infected individuals transmit to others at rate β 〈K 〉 (usually

we combine these into a single parameter).
I β represents the transmission rate per partnership.
I 〈K 〉 represents the typical number of partners.

I The proportion of transmissions that go to susceptible
individuals is S/N.

I Implicitly assume each interaction is with a new randomly
chosen individual.
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Stochastic simulation — SIR case
What behavior do we see with β 〈K 〉 = 2, γ = 1?

Cumulative infections
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The distinction between small and large outbreaks becomes clear
as N increases.
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Stochastic simulation — SIR case
What does the final size distribution look like?

In large populations:
Small outbreaks affect the same number of individuals.
Epidemics affect approximately the same proportion of the
population
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Stochastic simulation — SIS case
What behavior do we see with β 〈K 〉 = 2, γ = 1?
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Typically extinction occurs either early or after exponentially long
time. The proportion infected at equilibrium is approximately the

same for different population sizes.
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Stochastic simulation — SIS case
What does the “equilibrium” distribution look like?

The equilibrium proportion infected is about the same for different
population sizes.
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SIR: β 〈K 〉 IS
N γI

S I R

SIS:
β 〈K 〉 IS

N

γIS I

I SIR equations are:

Ṡ =

− β 〈K 〉 IS/N
İ = β 〈K 〉 IS/N − γI
Ṙ = γI

I SIS equations are

Ṡ = −β 〈K 〉 IS/N + γI

İ = β 〈K 〉 IS/N − γI
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Comparison
We compare our differential equations predictions with simulations
having transmission rate β 〈K 〉 IS/N and recovery rate γI .
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Recall our key questions

For SIR:

I P, the probability of an epidemic.
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R0

An important quantity in disease modeling is R0.

I R0 is the expected number of infections caused by an
individual infected early in the epidemic.

I If R0 < 1 epidemics cannot occur.

I If R0 > 1 epidemics can occur, but are not guaranteed.

So it’s an important threshold parameter, but it doesn’t address
the probability of epidemics.
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R0 calculation

The calculation of R0 is the same for SIR and SIS:

I Under our assumptions, every interaction an infected
individual has is with a new randomly chosen individual.

I Early in the epidemic, the probability it is with a susceptible
individual is S/N ≈ 1.

I The typical infection duration is 1/γ.

I The transmission rate during infection is β 〈K 〉.
I So the number of new infections is R0 = β 〈K 〉 /γ.

17 / 35
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Epidemic probability

i0

r0

i1

r1

i2

r2

· · ·

γi0 γi1 γi2

〈K 〉βi0 〈K 〉βi1 〈K 〉βi2

Consider an individual u who becomes infected at time t = t0.
Define im(t) and rm(t) to be the probability u has transmitted to
m individuals and is infectious or recovered.

I The probability of transmitting at least once before recovering
is 〈K〉β
〈K〉β+γ .

I The probability the first m events are transmisions is[
〈K〉β
〈K〉β+γ

]m
.

I For exactly m transmissions before recovery it is

rm(∞) =

(
〈K 〉β
〈K 〉β + γ

)m γ

〈K 〉β + γ
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We have

rm(∞) =

(
〈K 〉β
〈K 〉β + γ

)m γ

〈K 〉β + γ

For reasons that will be clear later, we define

f (x) =
∑
m

rm(∞)xm

=
γ

(〈K 〉β + γ)
(

1− 〈K〉βx
〈K〉β+γ

)

=
γ

〈K 〉β(1− x) + γ

I The probability of extinction after the first individual is the
probability it recovers without transmitting.

f (0) = r0(∞)

I The probability of reaching no further than the first
generation of offspring is the probability that none of the first
generation individuals causes a transmission.∑

m

rm(∞)[f (0)]m = f (f (0)) = f (2)(0)

[The superscript with parentheses denotes function iteration]
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I The probability of reaching no further than generation g is the
probability that none of the first generation individuals causes
a transmission chain of length longer than g − 1.∑

m

rm(∞)[f (g−1)(0)]m = f (g)(0)

I The probability the outbreak goes extinct in a finite number
of generations (in an infinite population) is limg→∞ f (g)(0).
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Cobweb diagrams

Consider f (x) =
1 + x3

2
. We can keep iterating f on 0.

A more

direct way is with a “cobweb diagram”.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f(0)
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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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SIS equilibrium size

I The SIS equations are

Ṡ = −β 〈K 〉 IS
N

+ γI

İ = β 〈K 〉 IS
N
− γI

I Setting Ṡ = 0, we conclude that either Ieq = 0 (the disease
has gone extinct) or β 〈K 〉Seq/N = γ.

I Taking the second case gives Seq = γN/β 〈K 〉 and
Ieq = N(1− γ/β 〈K 〉).

I If γ > β 〈K 〉 the disease must die out.

I If γ < β 〈K 〉 at equilibrium the disease has died out or reaches
an equilibrium having a fraction γ/β 〈K 〉 susceptible and the
rest infected.
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İ = β 〈K 〉 IS
N
− γI
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Alternate equations for SIR

Before deriving the final size relation, we derive an alternate
system of equations. The system has some important properties:

I There is a single governing ODE.

I It will make the final size relation trivial.

I It has a useful alternate interpretation that gives insight into
equations for disease on networks.
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Deriving alternate equations

I Starting from

Ṡ = −β 〈K 〉 I S
N

I We write

Ṡ +
β 〈K 〉 I

N
S = 0

I Multiplying by eξ(t) we have

Ṡeξ +
β 〈K 〉 I

N
Seξ = 0

I We choose ξ so that ξ̇ = β 〈K 〉 I/N. Then eξ is an
integrating factor. We can arbitrarily assume ξ(0) = 0.

I We have
d

dt
Seξ = Ṡeξ + S ξ̇eξ = 0

where ξ(0) = 0
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Deriving alternate equations

I So Seξ = S(0) and thus S(t) = S(0)e−ξ.

I We have ξ̇ = β 〈K 〉 I/N and Ṙ = γI . So

ξ̇ =
β 〈K 〉 Ṙ
Nγ

I And so

ξ =
β 〈K 〉
γ

R − R(0)

N
= R0

R − R(0)

N

or

R =
Nξ

R0
+ R(0)

I Finally

I = N − R − S = N − Nξ

R0
− R(0)− S(0)e−ξ
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SIR final size
I Our full equations are thus

ξ̇ = β 〈K 〉 I
N

= β 〈K 〉
(

1− ξ

R0
− R(0)

N
− S(0)e−ξ

N

)
combined with

S = S(0)e−ξ, R =
Nξ

R0
+ R(0), I = N − S − R

I So we find a single independent governing equation (for ξ)
that depends only on parameters, initial conditions, and ξ.

I The final size is found using I (∞) = 0, so

S(∞) = N − R(∞)

I Assuming S(0) ≈ N we conclude

Ne−ξ(∞) = N − R(∞)

I Assuming R(0) ≈ 0 and rearranging gives

R(∞)/N = 1− e−R0R(∞)/N
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So the final fraction A = R(∞)/N satisfies

A = 1− e−R0A

0 1 2 3 4 5

R0

0.0

0.2

0.4

0.6

0.8

1.0

A

iteration 0
iteration 1
iteration 2
iteration 3
iteration 4
iteration 100

We can solve this iteratively, starting from a guess A = 1.
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A = 1− e−R0A

0 1 2 3 4 5

R0

0.0

0.2

0.4

0.6

0.8

1.0

A

The results are in good agreement with simulation (subject to the
simulation satisfying the assumptions made in the equation

derivation).
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Direct derivation of alternate equations

Any time you derive an expression for some quantity, you should
think about what it means. — Peter Saeta (my freshman physics
professor)

We will give a direct derivation of these new equations, and later
use this approach to derive SIR equations for diseases in networks.
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Derivation

I Define ξ̂: the expected number of transmissions a random
individual has received by time t.

I Then
S(t) = S(0)e−ξ̂(t)

is the probability an individual was initially susceptible and has
not received any further transmissions.

I The transmission rate per infected individual is β 〈K 〉,

I The population-wide transmission rate is β 〈K 〉 I .
I Of these, a fraction 1/N are expected to go to any given

individual.
I So

d

dt
ξ̂ =

β 〈K 〉
N

I

I Thus ξ̂ satisfies the same relations as ξ, and we can conclude
that ξ̂ = ξ.
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Review

I We can write down fairly simple equations for mass-action
mixing of SIS and SIR disease.

I The sizes of epidemics are proportional to the population size.

I The sizes of small outbreaks are independent of (large
enough) population size.

I We can calculate epidemic probability and final size through
iteration.

I The mass-action SIR model can be reduced to a single ODE.
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