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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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Assumptions

We start with some simple assumptions:

I SIS or SIR disease on a fixed static network.

I Susceptible nodes , infected nodes , and recovered nodes
.

I Disease transmits along an edge with rate β (many authors use

τ)

I Infected individuals recover with rate γ
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Sample SIR epidemic
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Sample SIS epidemic
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Stochastic simulation — SIR on network case
SIR disease spread with 〈K 〉 = 5, β = 0.4, and γ = 1.

P(5) = 1, P(1) = P(9) = 0.5
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Stochastic simulation — SIR on network case
SIR disease spread with 〈K 〉 = 5, β = 0.4, and γ = 1.
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SIR observations

I In large networks outbreaks are either small (non-epidemic) or
large (epidemic).

I Small outbreaks don’t care about network size (once network
is sufficiently large).

I Epidemic sizes are proportional to network size.

I The degree distribution affects the final size and the early
growth.
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Stochastic simulation — SIS on network case
SIS disease spread with 〈K 〉 = 5, β = 0.4, and γ = 1.

P(5) = 1, P(1) = P(9) = 0.5
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Stochastic simulation — SIS on network case
What does the “equilibrium” distribution look like?

P(5) = 1, P(1) = P(9) = 0.5
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The equilibrium proportion infected is about the same for different
population sizes.
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SIS observations

I In large networks outbreaks either go extinct quickly
(non-epidemic) or reach an endemic equilibrium (epidemic).

I Small outbreaks don’t care about network size.

I Epidemic equilibrium sizes are proportional to network size.

I Coefficient of variation decreases for large networks. [typical
deviation from mean is small compared to mean.]
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Degree distribution

From [1]:

curves, which can additionally be plotted on logarithmic scales in
Figure 3. The inset in Figure 3 (Natsal 1990 data) with geometri-
cally grouped data are smooth and shows that the scatter of the
ungrouped data are mainly the result of memory effects and
misreporting.
Slightly different analyses were required depending on the pat-

tern over the whole range of reported numbers of partners. To
explore whether the networks are scale-free, we are mainly con-
cerned with the tail of the distribution. In some distributions, the
behavior is uniform from very low numbers of partners so a single
model can be fitted for the entire distribution. In others, there is a
level distribution before the probability falls off. In such cases, we
use data well to the right for fitting the model. In the Natsal 1990
and 2000 data, the linear region was deemed to begin at a single
partner for reports over a 1-year period and for homosexuals. For
lifetime partner numbers reported by heterosexuals, we started the
analysis of the tail at 16 reported partners. Similarly, for the data
collected in Zimbabwe, the tail of the distribution of reported
lifetime number of partners for men was analyzed from 16 part-
ners, but in all other cases, the analysis commenced at 4 reported
partners. In contrast to reports of MSM from the entire country
from the Natsal data, the LGMSHS data had a plateau at low
numbers of partners, so evaluation started at 12 partners over a
1-year period.

In addition to commencing our analysis well into the tail in
some of the distributions, 2 models can be fitted with the region
before that tail also described as a power law with very low decay
exponent, !, indicating a substantial pool of people with a few
partners.
In a chi-squared goodness-of-fit test, the power law model was

compared with observations and proved a reasonable fit for num-
bers of partners reported over 1 year from the 1990 Natsal (het-
erosexual men chi-squared ! 17.2, df ! 9; heterosexual women
chi-squared ! 4.24, df ! 3) and for lifetime numbers of partners
for MSM (chi-squared ! 17.1, df ! 6). Estimates for Natsal 2000
data were less likely to conform to a power law with the exception
of MSM (chi-squared ! 12.1, df ! 5). Comparing an exponential
model with the power law model as a description of the data
revealed a smaller value of the test statistic Q for the power law in
all cases (results not shown). The results of the likelihood ratio
tests comparing the power law model with the saturated model are
presented in Table 1 for each dataset, period of reporting partners
for heterosexual and homosexual men and women.
The power law model provides a good fit for the available data,

but it should be noted that the range of numbers of partners for
which the model can be compared with data are limited. The
number of orders of magnitude for which data are available reflects
the extent to which the scale-free behavior can be confidently

Fig. 2. Cumulative degree distribution of men
and women (National Survey of Sexual Atti-
tudes and Lifestyles Natsal 2000 data, Britain)
in the order: homosexual women (star), hetero-
sexual women (filled quadrangle), heterosex-
ual men (filled diamond), homosexual men
(filled triangle). Values for ! are: 3.3, 3.1, 2.5,
and 1.6, respectively.

Fig. 1. The distribution of reported number of
partners for heterosexual men (light gray bar)
and women (dark gray bar) in Britain over a
1-year period (National Survey of Sexual Atti-
tudes and Lifestyles [Natsal] 2000 data). Inset:
Reported number of sexual partners for those
with same sex partners over the same period
(the maximum for women is 4). The plots are
histograms showing the relative number of ob-
served numbers of partners (! degree) k ex-
cluding zeros.

Vol. 31 ● No. 6 383SCALE-FREE NETWORKS AND STDs

Impact on R0:
Holding 〈K 〉 fixed, increasing heterogeneity increases R0.

Why does this increase R0?
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Impact of degree distribution
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Depending on transmission rates, heterogeneous degree can

increase or reduce the size of epidemics.
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Depending on transmission rates, heterogeneous degree can
increase or reduce the size of epidemics.
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Understanding impact on final size

I Why does degree heterogeneity increase final epidemic size at
smaller transmission rate?

I Why does degree heterogeneity decrease final epidemic size at
higher transmission rate?
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Degree correlations

People claim opposites attract, but really they tend not to.

Individuals likely form partnerships with similar individuals.

If high degree individuals preferentially contact high degree
individuals, impact on R0: Increases it.
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Degree correlations

I Why do degree correlations increase final epidemic size at
smaller transmission rate?

I Why do degree correlations decrease final epidemic size at
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Degree correlations
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Degree correlations can increase or decrease epidemic sizes,
depending on transmission rate.
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Partnership duration

If partnerships have long duration, people are likely to have some
transmissions blocked, and are likely to reinfect their infector (in
SIS) rather than someone else.

Impact on R0:
For SIR, long partnership duration decreases R0 because repeated
transmissions are wasted.
For SIS, it is complex — repeated transmissions are wasted, but
long-lasting partnerships help ensure that newly-recovered high
degree nodes are quickly reinfected [2].
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Partnership duration

Sample SIR epidemics from [3]Hierarchy of epidemic models 883

Fig. 11 Convergence of DFD to CM and MFSH models. We consider the DFD model with varying
values of η. The degrees are k = 6, k = 8, and k = 10, with probability 1/3 each. This yields ψ(x) =
(x6 + x8 + x10)/3.We take β = 0.2 and γ = 1. As η decreases (top), the CM model results, while as η
increases (bottom) the MFSH model results. Note the difference in axes from top to bottom

Unlike previous models, these equations cannot be simplified into a single equation
for θ̇ .

The DFD model plays the same role in the actual degree case that DVD model
played in the expected degree case. It experiences similar limiting behavior. If η/β is
large, we recover the MFSH model. Alternately the CM is an accurate approximation
so long as η(t − t0) is small where t0 is a time around when the epidemic begins to
infect significant numbers. Again, a more precise condition that η(πI + πR)/r ≪ 1
where r is the early exponential growth rate is described in the SI.

Figure 11 shows the convergence of this model to the CM and MFSH models as
η → 0 or η → ∞.

3.3.4 Dormant contacts

We finally move to the dormant contact (DC) model which captures all the previous
expected and actual degree models as limiting cases. In the DC model, each node is
given km stubs [with km chosen using P(km)]. However, only a fraction of them are
active. At any given time, the node will have ka active stubs and kd dormant stubs, so
km = ka +kd is the maximum number of active stubs. Active stubs become dormant at
rate η2 and dormant stubs become active at rate η1. We defineψ(x) = ∑

km
P(km)xkm .

Using Fig. 12, the governing equations are

123

(η is inverse partnership duration, “CM” is static Configuration
Model)
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Clustering

If partnerships are clustered, even early on individuals who become
infected are likely to have partners who are infected by others.

Impact on R0: For SIR, decreases it. For SIS, it is complex.
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Clustering

Ratio of successive generation sizes from [4]

lower transmission rate higher transmission rate

steps is ½1Kð1KT2Þnuv $½1KT $cuv . Summing this over all
pairs yields (where N is the size of the population and
each pair u and v appears twice)
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involve more complicated shapes. This gives
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At the leading order, we recover the unclustered
prediction for R0, reflecting the fact that at small T the
probability the outbreak follows all edges of a cycle is
negligible. AsT increases, the first corrections are due to
triangles, then squares, then pairs of triangles sharing an

edge and sequentially larger and larger structures made
up of paths of length 2. A comparison of these
approximations with the exact value is shown in figure 4.

Although we have defined R0 for an ensemble of
realizations, figure 5 shows that R0,1 accurately
predicts the observed ratio NrC1/Nr for individual
simulations once the outbreaks are well established.
Early in outbreaks, the behaviour is dominated by
stochastic effects, and so the ratio of successive rank
sizes is noisy. Once the outbreak has grown large
enough, random events become unimportant and the
ratio settles at R0,1.

2

3.2. Epidemic probability and size

In order to assess the effect of clustering on P andA, we
compare epidemics on the EpiSimS network with the
analytic predictions derived assuming a CM network of
the same degree distribution in figure 6. The epidemic
threshold is not notably altered, and the values ofP and
A are almost indistinguishable from the predictions
made assuming no clustering, despite the large amount
of clustering in the network.

Although initially surprising, these results may be
understood intuitively as follows: if T is large enough
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Figure 4. (a,b) Comparison of first three asymptotic approximations for R0,1 from equation (3.1) with the exact value for the
EpiSimS network. (b) The comparison at small T is shown (solid curve, exactR0,1; dotted curve, first approximation; dot-dashed
curve, second approximation; dashed curve, third approximation).
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Figure 5. The progression of 10 simulated epidemics for (a) TZ0.1 and (b) TZ0.2 in the EpiSimS network. (a) NrC1/Nr against
rank and (b) the cumulative fraction of the population infected are shown (dotted curve, unclustered R0 prediction; dashed
curve, R0,1).

2Early noise controls how quickly outbreaks become epidemics, and so
once stochastic effects become small, the curves appear to be
translations in time. We note that it is common to consider the
temporal average of a number of outbreaks. However, prior to taking
an average, the curves should be shifted in time so that they coincide
once the stochastic effects are no longer important. Failure to do so
underestimates the early growth, peak incidence and late decay, while
it overestimates the epidemic duration. This can lead to an incorrect
understanding of ‘typical’ outbreaks.
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translations in time. We note that it is common to consider the
temporal average of a number of outbreaks. However, prior to taking
an average, the curves should be shifted in time so that they coincide
once the stochastic effects are no longer important. Failure to do so
underestimates the early growth, peak incidence and late decay, while
it overestimates the epidemic duration. This can lead to an incorrect
understanding of ‘typical’ outbreaks.
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Dotted line is prediction ignoring clustering. Dashed line is
correction accounting for triangles and squares.

23 / 26



Clustering

Ratio of successive generation sizes from [4]
lower transmission rate higher transmission rate
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once the stochastic effects are no longer important. Failure to do so
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understanding of ‘typical’ outbreaks.
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Dotted line is prediction ignoring clustering. Dashed line is
correction accounting for triangles and squares.
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Ratio of successive generation sizes from [4]
lower transmission rate higher transmission rate

steps is ½1Kð1KT2Þnuv $½1KT $cuv . Summing this over all
pairs yields (where N is the size of the population and
each pair u and v appears twice)
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At the leading order, we recover the unclustered
prediction for R0, reflecting the fact that at small T the
probability the outbreak follows all edges of a cycle is
negligible. AsT increases, the first corrections are due to
triangles, then squares, then pairs of triangles sharing an

edge and sequentially larger and larger structures made
up of paths of length 2. A comparison of these
approximations with the exact value is shown in figure 4.

Although we have defined R0 for an ensemble of
realizations, figure 5 shows that R0,1 accurately
predicts the observed ratio NrC1/Nr for individual
simulations once the outbreaks are well established.
Early in outbreaks, the behaviour is dominated by
stochastic effects, and so the ratio of successive rank
sizes is noisy. Once the outbreak has grown large
enough, random events become unimportant and the
ratio settles at R0,1.

2

3.2. Epidemic probability and size

In order to assess the effect of clustering on P andA, we
compare epidemics on the EpiSimS network with the
analytic predictions derived assuming a CM network of
the same degree distribution in figure 6. The epidemic
threshold is not notably altered, and the values ofP and
A are almost indistinguishable from the predictions
made assuming no clustering, despite the large amount
of clustering in the network.

Although initially surprising, these results may be
understood intuitively as follows: if T is large enough
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Figure 4. (a,b) Comparison of first three asymptotic approximations for R0,1 from equation (3.1) with the exact value for the
EpiSimS network. (b) The comparison at small T is shown (solid curve, exactR0,1; dotted curve, first approximation; dot-dashed
curve, second approximation; dashed curve, third approximation).
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Figure 5. The progression of 10 simulated epidemics for (a) TZ0.1 and (b) TZ0.2 in the EpiSimS network. (a) NrC1/Nr against
rank and (b) the cumulative fraction of the population infected are shown (dotted curve, unclustered R0 prediction; dashed
curve, R0,1).

2Early noise controls how quickly outbreaks become epidemics, and so
once stochastic effects become small, the curves appear to be
translations in time. We note that it is common to consider the
temporal average of a number of outbreaks. However, prior to taking
an average, the curves should be shifted in time so that they coincide
once the stochastic effects are no longer important. Failure to do so
underestimates the early growth, peak incidence and late decay, while
it overestimates the epidemic duration. This can lead to an incorrect
understanding of ‘typical’ outbreaks.
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At the leading order, we recover the unclustered
prediction for R0, reflecting the fact that at small T the
probability the outbreak follows all edges of a cycle is
negligible. AsT increases, the first corrections are due to
triangles, then squares, then pairs of triangles sharing an

edge and sequentially larger and larger structures made
up of paths of length 2. A comparison of these
approximations with the exact value is shown in figure 4.

Although we have defined R0 for an ensemble of
realizations, figure 5 shows that R0,1 accurately
predicts the observed ratio NrC1/Nr for individual
simulations once the outbreaks are well established.
Early in outbreaks, the behaviour is dominated by
stochastic effects, and so the ratio of successive rank
sizes is noisy. Once the outbreak has grown large
enough, random events become unimportant and the
ratio settles at R0,1.
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analytic predictions derived assuming a CM network of
the same degree distribution in figure 6. The epidemic
threshold is not notably altered, and the values ofP and
A are almost indistinguishable from the predictions
made assuming no clustering, despite the large amount
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rank and (b) the cumulative fraction of the population infected are shown (dotted curve, unclustered R0 prediction; dashed
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2Early noise controls how quickly outbreaks become epidemics, and so
once stochastic effects become small, the curves appear to be
translations in time. We note that it is common to consider the
temporal average of a number of outbreaks. However, prior to taking
an average, the curves should be shifted in time so that they coincide
once the stochastic effects are no longer important. Failure to do so
underestimates the early growth, peak incidence and late decay, while
it overestimates the epidemic duration. This can lead to an incorrect
understanding of ‘typical’ outbreaks.
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Dotted line is prediction ignoring clustering. Dashed line is
correction accounting for triangles and squares.
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Clustering

But the size is not so affected:

Comparison of unclustered prediction (line) with stochastic
simulation (symbols)

that the disease follows all edges of a short cycle, then
some other edge from a node of that cycle is likely to
start an epidemic and the cycle does not prevent an
epidemic. On the other hand, if T is smaller so that it
does not follow all edges of a cycle, then the disease
never sees the existence of the cycle, and the outbreak
progresses as if there were no cycle.

To make this more rigorous, we first look at the
epidemic threshold. We assume that R0 is well
approximated by R0,1. Let T0Zhki/hk2Kki be the
threshold without clustering and T0CdT be the
threshold found by including the correction due to
triangles. From equation (3.1), it follows that
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hk2Kki2

CO 2hnOihki
hk2Kki2

! "2# $
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Because a given node of degree k is contained in at most
(k2Kk)/2 triangles, we conclude 2hnOi/hk2Kki%1. So
if hki/hk2Kki is small, then the leading-order term of
equation (3.2) is small and triangles do not significantly
alter the epidemic threshold regardless of the density of
triangles. For the EpiSimS network, hki/hk2Kki takes
the value 0.046, and so we do not anticipate clustering
to play an important role in determining the threshold.

Above threshold, we assume that P may be
expanded much as (3.1)

P ZP0 CP1hnOiCP2hnOi2 C/CQ1hn,iC/;

ð3:3Þ

where P0 is the epidemic probability in a CM network
of the same degree distribution. Although calculating
R0,1 only requires information about the nodes of
distance at most two from the index case, P may
depend on the effects occurring at larger distance, and
so the expansion has many additional terms. In general,
we expect that if the average degree is large, then the
various coefficients of the correction terms are all small.
The larger a structure is, the smaller we expect its
corresponding coefficient to be. The coefficient for
triangles P1 may be found by
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where p̂OðuÞ is the probability that a given triangle
prevents an epidemic if u is the index case (regardless of
whether u is part of the triangle). Reversing the order of
summation, we get
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where NO is the number of triangles in G and h$iO is
the average of the given quantity taken over all
triangles. Thus
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;

and we can find P1 by considering the average effect of a
single triangle in an unclustered network.

To calculate the impact of a triangle with nodes u, v
and w on P for a given network, we consider that
triangle and a randomly chosen edge {x,y} elsewhere in
the network. If we replace the edges {v,w} and {x,y}
with {v,x} and {w,y}, then we have a new network
without the triangle, but with the same degree
distribution. We must estimate the expected change
in P caused by switching the edges.

We begin by assuming that u is the index case. The
triangle can affect P only if the infection tries to cross
all three edges, that is if the infection process ‘loses’ an
edge because of clustering. This may happen in three
distinct ways. In the first, node u infects both v and w,
and then v and/or w tries to infect the other. In the
second, u infects v but not w, then v infects w and finally
w tries to infect u. The third is symmetric to the second
(with u infecting w).

To leading order we can ignore other short cycles,
so the probability that an edge leading out of u (not to
v or w) will not cause an epidemic is gZ1KTCTh,
where h (as before) is the probability that a randomly
chosen secondary case does not cause an epidemic in an
unclustered network and can be calculated using
equation (2.9).

We perform a sample calculation with the first case:
u infects both v and w. Assume that u has degree ku, v
has degree kv and w has degree kw. The probability that
u infects both v and w without some other edge leading
from u, v or w starting an epidemic is T2gkuCkvCkwK6. If
the {v,w} edge were broken and v and w were joined to x
and y, respectively (figure 7), then the new probability
of u to infect both v and w without an epidemic becomes
T2gkuCkvCkwK4. The difference is T2gkuCkvCkwK6ð1Kg2Þ,
which is the product of three terms, all at most 1. If the
sum kuCkvCkw is moderately large, then either
gkuCkvCkwK6/1 or 1Kg2/1 (if g is not close to 1
then the first term is small, otherwise the second term is
small). Thus, the triangle has little impact on the
epidemic probability in this case.3 Similar analysis
applies to the other two cases where the w to u or v to u
infections are lost. Provided the typical sum of degrees
of nodes in a triangle is relatively large, the probability
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Figure 6. Probability P and attack rate A of epidemics for the
(clustered) EpiSimS network (pluses) versus T, compared with
the prediction derived from the degree distribution assuming
no clustering. Each data point is from a single EPN (the
variation in P resulting from different EPNs is negligible).

3If P is small, then the relative change may be large, but the absolute
change is small.

Epidemic spread in clustered populations J. C. Miller 7

J. R. Soc. Interface

 on 24 March 2009rsif.royalsocietypublishing.orgDownloaded from 

(horizontal axis is transmission probability, vertical is fraction
infected.)
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Clustering

But the size is not so affected:

Comparison of unclustered prediction (line) with stochastic
simulation (symbols)

that the disease follows all edges of a short cycle, then
some other edge from a node of that cycle is likely to
start an epidemic and the cycle does not prevent an
epidemic. On the other hand, if T is smaller so that it
does not follow all edges of a cycle, then the disease
never sees the existence of the cycle, and the outbreak
progresses as if there were no cycle.

To make this more rigorous, we first look at the
epidemic threshold. We assume that R0 is well
approximated by R0,1. Let T0Zhki/hk2Kki be the
threshold without clustering and T0CdT be the
threshold found by including the correction due to
triangles. From equation (3.1), it follows that
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Because a given node of degree k is contained in at most
(k2Kk)/2 triangles, we conclude 2hnOi/hk2Kki%1. So
if hki/hk2Kki is small, then the leading-order term of
equation (3.2) is small and triangles do not significantly
alter the epidemic threshold regardless of the density of
triangles. For the EpiSimS network, hki/hk2Kki takes
the value 0.046, and so we do not anticipate clustering
to play an important role in determining the threshold.

Above threshold, we assume that P may be
expanded much as (3.1)
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where P0 is the epidemic probability in a CM network
of the same degree distribution. Although calculating
R0,1 only requires information about the nodes of
distance at most two from the index case, P may
depend on the effects occurring at larger distance, and
so the expansion has many additional terms. In general,
we expect that if the average degree is large, then the
various coefficients of the correction terms are all small.
The larger a structure is, the smaller we expect its
corresponding coefficient to be. The coefficient for
triangles P1 may be found by
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the average of the given quantity taken over all
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and we can find P1 by considering the average effect of a
single triangle in an unclustered network.

To calculate the impact of a triangle with nodes u, v
and w on P for a given network, we consider that
triangle and a randomly chosen edge {x,y} elsewhere in
the network. If we replace the edges {v,w} and {x,y}
with {v,x} and {w,y}, then we have a new network
without the triangle, but with the same degree
distribution. We must estimate the expected change
in P caused by switching the edges.

We begin by assuming that u is the index case. The
triangle can affect P only if the infection tries to cross
all three edges, that is if the infection process ‘loses’ an
edge because of clustering. This may happen in three
distinct ways. In the first, node u infects both v and w,
and then v and/or w tries to infect the other. In the
second, u infects v but not w, then v infects w and finally
w tries to infect u. The third is symmetric to the second
(with u infecting w).

To leading order we can ignore other short cycles,
so the probability that an edge leading out of u (not to
v or w) will not cause an epidemic is gZ1KTCTh,
where h (as before) is the probability that a randomly
chosen secondary case does not cause an epidemic in an
unclustered network and can be calculated using
equation (2.9).

We perform a sample calculation with the first case:
u infects both v and w. Assume that u has degree ku, v
has degree kv and w has degree kw. The probability that
u infects both v and w without some other edge leading
from u, v or w starting an epidemic is T2gkuCkvCkwK6. If
the {v,w} edge were broken and v and w were joined to x
and y, respectively (figure 7), then the new probability
of u to infect both v and w without an epidemic becomes
T2gkuCkvCkwK4. The difference is T2gkuCkvCkwK6ð1Kg2Þ,
which is the product of three terms, all at most 1. If the
sum kuCkvCkw is moderately large, then either
gkuCkvCkwK6/1 or 1Kg2/1 (if g is not close to 1
then the first term is small, otherwise the second term is
small). Thus, the triangle has little impact on the
epidemic probability in this case.3 Similar analysis
applies to the other two cases where the w to u or v to u
infections are lost. Provided the typical sum of degrees
of nodes in a triangle is relatively large, the probability
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Figure 6. Probability P and attack rate A of epidemics for the
(clustered) EpiSimS network (pluses) versus T, compared with
the prediction derived from the degree distribution assuming
no clustering. Each data point is from a single EPN (the
variation in P resulting from different EPNs is negligible).

3If P is small, then the relative change may be large, but the absolute
change is small.

Epidemic spread in clustered populations J. C. Miller 7

J. R. Soc. Interface

 on 24 March 2009rsif.royalsocietypublishing.orgDownloaded from 

(horizontal axis is transmission probability, vertical is fraction
infected.)
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