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Recall our key questions

For SIR:
» P, the probability of an epidemic.

» A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

> Ry, the average number of infections caused by those infected
early in the epidemic.

» /(t), the time course of the epidemic.
For SIS:

» P

» /(00), the equilibrium level of infection

> Ro

> I(t)
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Introduction
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Assumptions

We start with some simple assumptions:
» SIS or SIR disease on a fixed static network.

» Susceptible nodes O infected nodes O and recovered nodes
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Assumptions

We start with some simple assumptions:
» SIS or SIR disease on a fixed static network.

» Susceptible nodes O infected nodes O and recovered nodes

> Disease transmits along an edge with rate 8 (many authors use
7)

> Infected individuals recover with rate ~
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Sample stochastic simulations
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Sample SIR epidemic

/l./
r ‘l-'\h

.ﬂé

Q)

-4..,

E

U

.ﬂ.. {

[#5

26



Sample SIS epidemic
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Stochastic simulation — SIR on network case
SIR disease spread with (K) =5, f=0.4, and v = 1.
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Stochastic simulation — SIR on network case
SIR disease spread with (K) =5, f=0.4, and v = 1.

P(5) =1, P(1) = P(9) = 0.5
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Stochastic simulation — SIR on network case
SIR disease spread with (K) =5, f=0.4, and v = 1.

P(5) =1, P(1) = P(9) = 0.5
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Stochastic simulation — SIR on network case
SIR disease spread with (K) =5, f=0.4, and v = 1.

P(5) =1, P(1) = P(9) = 0.5
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Stochastic simulation — SIR on network case
SIR disease spread with (K) =5, f=0.4, and v = 1.
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Stochastic simulation — SIR on network case
SIR disease spread with (K) =5, f=0.4, and v = 1.

P(5) =1, P(1) = P(9) = 0.5
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SIR observations

» In large networks outbreaks are either small (non-epidemic) or
large (epidemic).

» Small outbreaks don't care about network size (once network
is sufficiently large).

» Epidemic sizes are proportional to network size.

> The degree distribution affects the final size and the early
growth.
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Stochastic simulation — SIS on network case
SIS disease spread with (K) =5, =0.4, and v =1.

P(5) =1,
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Stochastic simulation — SIS on network case
SIS disease spread with (K) =5, §=0.4, and v =1.

P(5) =1,
140
140
120
120
100
F @ 10
o 8 o
] 5"
60
& & e
< £
40 W0
20 20
0 0
0 5 10 15 20 25 0 s 10 15 20 25 3
t t

CIRY= = = = 9ac
10/26



Stochastic simulation — SIS on network case
SIS disease spread with (K) =5, §=0.4, and v =1.
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Stochastic simulation — SIS on network case
SIS disease spread with (K) =5, §=0.4, and v =1.

P(5) =1, P(1) = P(9) = 0.5
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Stochastic simulation — SIS on network case
SIS disease spread with (K) =5, §=0.4, and v =1.
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Stochastic simulation — SIS on network case
What does the “equilibrium” distribution look like?

P(5) =1, P(1) = P(9) =05
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Stochastic simulation — SIS on network case
What does the “equilibrium” distribution look like?

P(1) = P(9) =05
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Stochastic simulation — SIS on network case
What does the “equilibrium” distribution look like?
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SIS observations

v

In large networks outbreaks either go extinct quickly
(non-epidemic) or reach an endemic equilibrium (epidemic).

v

Small outbreaks don’t care about network size.

v

Epidemic equilibrium sizes are proportional to network size.

v

Coefficient of variation decreases for large networks. [typical
deviation from mean is small compared to mean.]
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Impact of network properties
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Degree distribution
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Degree distribution
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Holding (K) fixed, increasing heterogeneity increases Rg.
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Degree distribution

From [1]:
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Impact on Ry:
Holding (K) fixed, increasing heterogeneity increases Rg.

Why does this increase Rg?
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Impact of degree distribution
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Understanding impact on final size

» Why does degree heterogeneity increase final epidemic size at
smaller transmission rate?
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Understanding impact on final size

» Why does degree heterogeneity increase final epidemic size at
smaller transmission rate?

» Why does degree heterogeneity decrease final epidemic size at
higher transmission rate?
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Degree correlations

People claim opposites attract, but really they tend not to.
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Degree correlations

People claim opposites attract, but really they tend not to.
Individuals likely form partnerships with similar individuals.
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Degree correlations

People claim opposites attract, but really they tend not to.
Individuals likely form partnerships with similar individuals.

If high degree individuals preferentially contact high degree
individuals, impact on Ry:
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Degree correlations

People claim opposites attract, but really they tend not to.
Individuals likely form partnerships with similar individuals.

If high degree individuals preferentially contact high degree
individuals, impact on Rg: Increases it.
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Degree correlations

» Why do degree correlations increase final epidemic size at
smaller transmission rate?

18 /26



Degree correlations

» Why do degree correlations increase final epidemic size at
smaller transmission rate?

» Why do degree correlations decrease final epidemic size at
higher transmission rate?
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Degree correlations
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Degree correlations
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Partnership duration

If partnerships have long duration, people are likely to have some
transmissions blocked, and are likely to reinfect their infector (in
SIS) rather than someone else.
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Partnership duration

If partnerships have long duration, people are likely to have some
transmissions blocked, and are likely to reinfect their infector (in
SIS) rather than someone else.

Impact on Rg:

For SIR, long partnership duration decreases R because repeated
transmissions are wasted.
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Partnership duration

If partnerships have long duration, people are likely to have some
transmissions blocked, and are likely to reinfect their infector (in
SIS) rather than someone else.

Impact on Rg:

For SIR, long partnership duration decreases R because repeated
transmissions are wasted.

For SIS, it is complex — repeated transmissions are wasted, but
long-lasting partnerships help ensure that newly-recovered high
degree nodes are quickly reinfected [2].
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Partnership duration

Sample SIR epidemics from [3]
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Clustering

If partnerships are clustered, even early on individuals who become
infected are likely to have partners who are infected by others.
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Clustering

If partnerships are clustered, even early on individuals who become
infected are likely to have partners who are infected by others.

Impact on Rg:
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Clustering

If partnerships are clustered, even early on individuals who become
infected are likely to have partners who are infected by others.

Impact on Rg: For SIR, decreases it. For SIS, it is complex.
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Clustering

Ratio of successive generation sizes from [4]
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Clustering

Ratio of successive generation sizes from [4]
lower transmission rate higher transmission rate
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Clustering

Ratio of successive generation sizes from [4]
lower transmission rate higher transmission rate

0 5 10 15 20 25 30 35 40

Dotted line is prediction ignoring clustering. Dashed line is
correction accounting for triangles and squares.
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Clustering

But the size is not so affected:
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Clustering

But the size is not so affected:

Comparison of unclustered prediction (line) with stochastic
simulation (symbols)
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