Part 4 - Equation-based models of disease spread in networks

Joel C. Miller \& Tom Hladish

18-20 July 2018

Deriving equations

Simple heterogeneous model

References

Challenges for an analytic model

- When we rigorously derive

$$
\begin{aligned}
\dot{S} & =-\beta \frac{I S}{N} \\
i & =\beta \frac{I S}{N}-\gamma I
\end{aligned}
$$

for the compartmental model, we use the fact that it does not matter which individuals are susceptible or infected.

Challenges for an analytic model

- When we rigorously derive

$$
\begin{aligned}
\dot{S} & =-\beta \frac{I S}{N} \\
i & =\beta \frac{I S}{N}-\gamma I
\end{aligned}
$$

for the compartmental model, we use the fact that it does not matter which individuals are susceptible or infected.

- If there are S susceptible and I infected individuals, the combined infection rate is $\beta I S / N$. Similarly the combined recovery rate is $\gamma /$.

Challenges for an analytic model

- When we rigorously derive

$$
\begin{aligned}
\dot{S} & =-\beta \frac{I S}{N} \\
i & =\beta \frac{I S}{N}-\gamma I
\end{aligned}
$$

for the compartmental model, we use the fact that it does not matter which individuals are susceptible or infected.

- If there are S susceptible and I infected individuals, the combined infection rate is $\beta I S / N$. Similarly the combined recovery rate is γl.
- In a network, it matters exactly which nodes are susceptible or infected.

Triangle example

All that we need to predict the rate of change of S and I in a triangle is the current value of S and I.

Triangle example

All that we need to predict the rate of change of S and I in a triangle is the current value of S and I.

Triangle example

All that we need to predict the rate of change of S and I in a triangle is the current value of S and I.

Star example

For a star however, having just the current values of S and I is not enough.

Star example

For a star however, having just the current values of S and I is not enough.

Star example

For a star however, having just the current values of S and I is not enough.

(numbered based on whether the central node is infected or not and how many peripheral nodes are infected)

Towards an analytic model*

- How many I nodes?
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes?
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
- How many SI edges?
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
- How many SI edges? [SI] $=8$.
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
- How many SI edges? [SI] $=8$.
- How many SSI triples?
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
- How many SI edges? [SI] $=8$.
- How many SSI triples? [SSI] = 19 .
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process,

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
- How many SI edges? [SI] $=8$.
- How many SSI triples? [SSI] = 19 .
- How many ISI triples?
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model*

- How many I nodes? [I] = 3 .
- How many S nodes? $[S]=22$.
- How many SI edges? [SI] = 8 .
- How many SSI triples? [SSI] = 19 .
- How many $I S I$ triples? $[I S I]=2$.
*By "analytic" I mean we can write down deterministic equations rather than simply describe the transitions of a stochastic process.

Towards an analytic model

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[X]=\sum_{\substack{\text { possible } \\ \text { transitions }}} \text { rate(transition) } \times \Delta[X] \text { (transition) }
$$

That is, the rate of change of $[X]$ is the sum over all possible transitions of the rate of the transition times the resulting change in $[X]$ if that transition occurs.

SIS

SIR
[Adapted from [1]]

Finding SIR equations

- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S]$?

Finding SIR equations

- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S]$?
- 1 is removed whenever an $S /$ edge transmits. So
- $\frac{\mathrm{d}}{\mathrm{d} t}[S]=-\beta[S I]$

Finding SIR equations

- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S]$?
- 1 is removed whenever an $S /$ edge transmits. So
- $\frac{\mathrm{d}}{\mathrm{d} t}[S]=-\beta[S I]$
- What is $\frac{\mathrm{d}}{\mathrm{d} t}[I]$?

Finding SIR equations

- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S]$?
- 1 is removed whenever an $S /$ edge transmits. So
- $\frac{\mathrm{d}}{\mathrm{d} t}[S]=-\beta[S I]$
- What is $\frac{\mathrm{d}}{\mathrm{d} t}[/]$?
- An I is removed whenever a recovery occurs.
- An I is created whenever an SI edge transmits
- $\frac{\mathrm{d}}{\mathrm{d} t}[I]=\beta[S I]-\gamma I$

Finding SIR equations

- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S]$?
- 1 is removed whenever an $S /$ edge transmits. So
- $\frac{\mathrm{d}}{\mathrm{d} t}[S]=-\beta[S I]$
- What is $\frac{\mathrm{d}}{\mathrm{d} t}[I]$?
- An I is removed whenever a recovery occurs.
- An I is created whenever an SI edge transmits
- $\frac{\mathrm{d}}{\mathrm{d} t}[I]=\beta[S I]-\gamma I$
- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S /]$?

Finding SIR equations

- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S]$?
- 1 is removed whenever an SI edge transmits. So
- $\frac{\mathrm{d}}{\mathrm{d} t}[S]=-\beta[S I]$
- What is $\frac{\mathrm{d}}{\mathrm{d} t}[/]$?
- An I is removed whenever a recovery occurs.
- An I is created whenever an SI edge transmits
- $\frac{\mathrm{d}}{\mathrm{d} t}[I]=\beta[S I]-\gamma I$
- What is $\frac{\mathrm{d}}{\mathrm{d} t}[S /]$?
- An SI edge is removed whenever the infected node transmits.
- An SI edge is removed whenever the infected node recovers.
- For each SSI triple that contains an SI edge that transmits, a new $S I$ edge is created.
- For each ISI triple, when the first node transmits it removes the second $S I$ pair as well.
- $\frac{\mathrm{d}}{\mathrm{d} t}[S I]=-(\beta+\gamma)[S I]+\beta([S S I]-[I S I])$

Finding SIR equations

So we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}[S] & =-\beta[S I] \\
\frac{\mathrm{d}}{\mathrm{~d} t}[I] & =\beta[S I]-\gamma[I] \\
\frac{\mathrm{d}}{\mathrm{~d} t}[S I] & =-(\beta+\gamma)[S I]+\beta([S S I]-[I S I]) \\
\frac{\mathrm{d}}{\mathrm{~d} t}[S S I] & =\cdots \\
\frac{\mathrm{d}}{\mathrm{~d} t}[I S I] & =\cdots
\end{aligned}
$$

Finding SIS equations

The equations for SIS are very similar. Let's look specifically at the [SI] equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[S I]=\beta[S S I]-\beta[I S I]-\beta[S I]-\gamma[S I]
$$

Finding SIS equations

The equations for SIS are very similar. Let's look specifically at the [SI] equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[S I]=\beta[S S I]-\beta[I S I]-\beta[S I]-\gamma[S I]
$$

- The first term represents a node in an SS pair getting infected by another neighbor.

Finding SIS equations

The equations for SIS are very similar. Let's look specifically at the [SI] equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[S I]=\beta[S S I]-\beta[I S I]-\beta[S I]-\gamma[S I]
$$

- The first term represents a node in an SS pair getting infected by another neighbor.
- The second term represents the susceptible node in an SI pair being infected by another neighbor.

Finding SIS equations

The equations for SIS are very similar. Let's look specifically at the [SI] equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[S I]=\beta[S S I]-\beta[I S I]-\beta[S I]-\gamma[S I]
$$

- The first term represents a node in an SS pair getting infected by another neighbor.
- The second term represents the susceptible node in an SI pair being infected by another neighbor.
- The third term represents the susceptible node in an SI pair being infected by the infected node in the pair.

Finding SIS equations

The equations for SIS are very similar. Let's look specifically at the [SI] equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}[S I]=\beta[S S I]-\beta[I S I]-\beta[S I]-\gamma[S I]
$$

- The first term represents a node in an SS pair getting infected by another neighbor.
- The second term represents the susceptible node in an SI pair being infected by another neighbor.
- The third term represents the susceptible node in an SI pair being infected by the infected node in the pair.
- The fourth term represents the infected node in an SI pair recovering.

Closures

Our equations require larger and larger terms.

Closures

Our equations require larger and larger terms. Let's try short circuiting that chain with a "closure approximation":

$$
[S I]=[S][I]\langle K\rangle / N
$$

where $\langle K\rangle$ is the average degree. So we replace the $\frac{\mathrm{d}}{\mathrm{d} t}[S I]$ equation with $[S I]=[S][I]\langle K\rangle / N$.

Closures

Our equations require larger and larger terms. Let's try short circuiting that chain with a "closure approximation":

$$
[S I]=[S][I]\langle K\rangle / N
$$

where $\langle K\rangle$ is the average degree. So we replace the $\frac{\mathrm{d}}{\mathrm{d} t}[\mathrm{SI}]$ equation with $[S I]=[S][I]\langle K\rangle / N$.

- SIS:

$$
\begin{aligned}
{[\dot{S}] } & =-\beta\langle K\rangle[S][I] / N+\gamma[I] \\
{[\dot{I}] } & =\beta\langle K\rangle[S][I] / N-\gamma[I]
\end{aligned}
$$

Closures

Our equations require larger and larger terms. Let's try short circuiting that chain with a "closure approximation":

$$
[S I]=[S][I]\langle K\rangle / N
$$

where $\langle K\rangle$ is the average degree. So we replace the $\frac{d}{d t}[S I]$ equation with $[S I]=[S][I]\langle K\rangle / N$.

- SIS:

$$
\begin{aligned}
{[\dot{S}] } & =-\beta\langle K\rangle[S][I] / N+\gamma[I] \\
{[\dot{I}] } & =\beta\langle K\rangle[S][I] / N-\gamma[I]
\end{aligned}
$$

- SIR:

$$
\begin{aligned}
{[\dot{S}] } & =-\beta\langle K\rangle[S][I] / N \\
{[\dot{I}] } & =\beta\langle K\rangle[S][I] / N-\gamma[I] \\
{[\dot{R}] } & =\gamma[I]
\end{aligned}
$$

Closures

Our equations require larger and larger terms. Let's try short circuiting that chain with a "closure approximation":

$$
[S I]=[S][I]\langle K\rangle / N
$$

where $\langle K\rangle$ is the average degree. So we replace the $\frac{d}{d t}[S I]$ equation with $[S I]=[S][I]\langle K\rangle / N$.

- SIS:

$$
\begin{aligned}
{[\dot{S}] } & =-\beta\langle K\rangle[S][I] / N+\gamma[I] \\
{[i] } & =\beta\langle K\rangle[S][I] / N-\gamma[I]
\end{aligned}
$$

- SIR:

$$
\begin{aligned}
{[\dot{S}] } & =-\beta\langle K\rangle[S][I] / N \\
{[\dot{i}] } & =\beta\langle K\rangle[S][I] / N-\gamma[I] \\
{[\dot{R}] } & =\gamma[I]
\end{aligned}
$$

These are equivalent to the Kermack-McKendrick equations

Accuracy of $[S I]=\langle K\rangle[S][I] / N$

	Erdős-Rényi $\langle K\rangle=5$	Config Model $P(5)=1$
SIR		
SIS		

Appropriateness of $[S I]=\langle K\rangle[S][I] / N$

What assumptions are we making when we set
$[S I]=\langle K\rangle[S][I] / N$?

- We're assuming that nodes are not preferentially infected by degree.
- We're assuming that neighbors of infected nodes are no more likely to be infected than any other node.
- We implicitly assume partners change rapidly.

Appropriateness of $[S I]=\langle K\rangle[S][I] / N$

What assumptions are we making when we set
$[S I]=\langle K\rangle[S][I] / N$?

- We're assuming that nodes are not preferentially infected by degree.
- We're assuming that neighbors of infected nodes are no more likely to be infected than any other node.
- We implicitly assume partners change rapidly.

When are these assumptions appropriate?

- Same degree, annealed network. Partnerships have zero duration.
- Large very similar degrees, transmission probability per edge very low, and low clustering.
- As a general rule - if the disease will never transmit across the same partnership twice, we can use models that ignore partnership duration.

A more accurate closure.

Our original equations are

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}[S] & =-\beta[S I] \\
\frac{\mathrm{d}}{\mathrm{~d} t}[I] & =\beta[S I]-\gamma[I] \\
\frac{\mathrm{d}}{\mathrm{~d} t}[S I] & =-(\beta+\gamma)[S I]+\beta([S S I]-[I S I]) \\
\frac{\mathrm{d}}{\mathrm{~d} t}[S S I] & =\cdots \\
\frac{\mathrm{d}}{\mathrm{~d} t}[I S I] & =\cdots
\end{aligned}
$$

Perhaps we can do a better job if we allow larger terms.

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate [SSI] in terms of [SS] and [SI]?

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate $[S S I]$ in terms of [$S S$] and [$[S /]$?

- Consider an edge $u-v$ with both nodes susceptible. There are [SS] ways to find such a pair.

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate $[S S I]$ in terms of [$S S$] and [$[S /]$?

- Consider an edge $u-v$ with both nodes susceptible. There are [SS] ways to find such a pair.
- How many $u-v-X$ are expected where X is infected?

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate [$S S I$] in terms of [$S S$] and [$[S /$]?

- Consider an edge $u-v$ with both nodes susceptible. There are [SS] ways to find such a pair.
- How many $u-v-X$ are expected where X is infected?
- Assuming $k_{v}=\langle K\rangle$, there are $\langle K\rangle-1$ possible edges from v.

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate [SSI] in terms of [SS] and [SI]?

- Consider an edge $u-v$ with both nodes susceptible. There are [SS] ways to find such a pair.
- How many $u-v-X$ are expected where X is infected?
- Assuming $k_{v}=\langle K\rangle$, there are $\langle K\rangle-1$ possible edges from v.
- The probability X is infected is $[S I] /\langle K\rangle[S]$.

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate [SSI] in terms of [SS] and [SI]?

- Consider an edge $u-v$ with both nodes susceptible. There are [SS] ways to find such a pair.
- How many $u-v-X$ are expected where X is infected?
- Assuming $k_{v}=\langle K\rangle$, there are $\langle K\rangle-1$ possible edges from v.
- The probability X is infected is $[S I] /\langle K\rangle[S]$.
- So we predict $[S S I]=[S S][S I](\langle K\rangle-1) /\langle K\rangle[S]$.

Approximating [SSI] and [ISI] instead of [SI]

Can we approximate [SSI] in terms of [SS] and [SI]?

- Consider an edge $u-v$ with both nodes susceptible. There are [SS] ways to find such a pair.
- How many $u-v-X$ are expected where X is infected?
- Assuming $k_{v}=\langle K\rangle$, there are $\langle K\rangle-1$ possible edges from v.
- The probability X is infected is $[S I] /\langle K\rangle[S]$.
- So we predict $[S S I]=[S S][S I](\langle K\rangle-1) /\langle K\rangle[S]$.
- Unless knowing that u is susceptible would change the prediction for the probability X is infected. (not for SIR, but true for SIS since [SS] edges may be concentrated around those who have not been infected recently.)

New equations

Our new equations are

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}[S] & =-\beta[S I] \\
\frac{\mathrm{d}}{\mathrm{~d} t}[I] & =\beta[S I]-\gamma[I] \\
\frac{\mathrm{d}}{\mathrm{~d} t}[S I] & =-(\beta+\gamma)[S I]+\beta \frac{\langle K\rangle-1}{\langle K\rangle}\left(\frac{([S S][S I]-[S I][S I])}{[S]}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}[S S] & =-2 \beta \frac{\langle K\rangle-1}{\langle K\rangle} \frac{[S I][S S]}{[S]}
\end{aligned}
$$

(we need to add an [SS] equation)

Theory versus stochastic simulation

Deriving equations

Simple heterogeneous model

References

A model for heterogeneous networks

- We can develop a model that accounts for degree correlation.

A model for heterogeneous networks

- We can develop a model that accounts for degree correlation.
- Our model has terms like

$$
\left[A_{k} B_{l}\right]
$$

To give the number of pairs involving a degree k node with status A and a degree I node with status B.

A model for heterogeneous networks

- We can develop a model that accounts for degree correlation.
- Our model has terms like

$$
\left[A_{k} B_{l}\right]
$$

To give the number of pairs involving a degree k node with status A and a degree I node with status B.

- We derive similar unclosed equations, and then use a closure.

Flow diagrams

Hetterogeneous networks

Using the notation $\left[S_{k} I\right]=\sum_{l}\left[S_{k} I_{l}\right]$,

Hetterogeneous networks

Using the notation $\left[S_{k} I\right]=\sum_{l}\left[S_{k} I_{I}\right]$,
For SIS we get

$$
\begin{aligned}
& {\left[\dot{S}_{k}\right]=\gamma\left[I_{k}\right]-\tau\left[S_{k} I\right],} \\
& {\left[\dot{I_{k}}\right]=\tau\left[S_{k} I\right]-\gamma\left[I_{k}\right],} \\
& {\left[S_{k} I_{l}\right]=\gamma\left(\left[I_{k} I_{l}\right]-\left[S_{k} I_{l}\right]\right)+\tau\left(\left[S_{k} S_{I} I\right]-\left[I S_{k} I_{I}\right]-\left[S_{k} I_{]}\right]\right) \text {, }} \\
& {\left[S_{k} S_{l}\right]=\gamma\left(\left[S_{k} I_{l}\right]+\left[I_{k} S_{l}\right]\right)-\tau\left(\left[S_{k} S_{l} I\right]+\left[I S_{k} S_{l}\right]\right),} \\
& {\left[\dot{I}_{k} I_{I}\right]=\tau\left(\left[S_{k} I_{I}\right]+\left[I_{k} S_{I}\right]\right)-2 \gamma\left[I_{k} I_{l}\right]+\tau\left(\left[I S_{k} I_{I}\right]+\left[I_{k} S_{I} I\right]\right)}
\end{aligned}
$$

These models can account for degree assortativity or dissasortativity, but LOTS OF EQUATIONS.
We can do closures in terms of pairs, but do not show that here (see [1]).

Hetterogeneous networks

Using the notation $\left[S_{k} I\right]=\sum_{l}\left[S_{k} I_{I}\right]$,
For SIR we get

$$
\begin{aligned}
{\left[\dot{S}_{k}\right] } & =-\tau\left[S_{k} I\right] \\
{\left[\dot{I}_{k}\right] } & =\tau\left[S_{k} I\right]-\gamma\left[I_{k}\right] \\
{\left[\dot{R_{k}}\right] } & =\gamma\left[I_{k}\right] \\
{\left[\dot{S_{k} I_{I}}\right] } & =-\gamma\left[S_{k} I_{I}\right]+\tau\left(\left[S_{k} S_{I} I\right]-\left[I S_{k} I_{I}\right]-\left[S_{k} I_{I}\right]\right) \\
{\left[S_{k} S_{I}\right] } & =-\tau\left(\left[S_{k} S_{I} I\right]+\left[I S_{k} S_{l}\right]\right)
\end{aligned}
$$

These models can account for degree assortativity or dissasortativity, but LOTS OF EQUATIONS.
We can do closures in terms of pairs, but do not show that here (see [1]).

Simplest closure (annealed networks)

We can derive a model that accounts for degree distribution, but not partnership duration [2, 3, 4]:

Our equations become

Simplest closure (annealed networks)

We can derive a model that accounts for degree distribution, but not partnership duration [2, 3, 4]:

Our equations become
SIS:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[S_{k}\right] & =\gamma\left[I_{k}\right]-\tau\left[S_{k}\right] k \pi_{I} \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left[I_{k}\right] & =\tau\left[S_{k}\right] k \pi_{I}-\gamma\left[I_{k}\right] \\
\pi_{I} & =\sum k\left[I_{k}\right] / N\langle K\rangle
\end{aligned}
$$

Simplest closure (annealed networks)

We can derive a model that accounts for degree distribution, but not partnership duration [2, 3, 4]:

Our equations become

SIR:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[S_{k}\right] & =-\tau\left[S_{k}\right] k \pi_{I} \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left[I_{k}\right] & =\tau\left[S_{k}\right] k \pi_{I}-\gamma\left[I_{k}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left[R_{k}\right] & =\gamma\left[I_{k}\right] \\
\pi_{I} & =\sum k\left[I_{k}\right] / N\langle K\rangle
\end{aligned}
$$

Recall our key questions

For SIR:

- \mathcal{P}, the probability of an epidemic.
- \mathcal{A}, the "attack rate": the fraction infected if an epidemic happens (better named the attack ratio).
- \mathcal{R}_{0}, the average number of infections caused by those infected early in the epidemic.
- $I(t)$, the time course of the epidemic.

For SIS:

- \mathcal{P}
- $I(\infty)$, the equilibrium level of infection
- \mathcal{R}_{0}
- I($t)$
\mathcal{R}_{0}

Early on,

Early on,

- The degree of an infected person is chosen using $P_{n}(k)=k P(k) /\langle K\rangle$.

Early on,

- The degree of an infected person is chosen using $P_{n}(k)=k P(k) /\langle K\rangle$.
- The expected number of transmisions from a degree k individual before recovery is $k \beta / \gamma$.
[This implicitly assumes partners are constantly replaced].

Early on,

- The degree of an infected person is chosen using $P_{n}(k)=k P(k) /\langle K\rangle$.
- The expected number of transmisions from a degree k individual before recovery is $k \beta / \gamma$.
[This implicitly assumes partners are constantly replaced].
- So

$$
\mathcal{R}_{0}=\sum_{k} \frac{k P(k)}{\langle K\rangle} k \frac{\beta}{\gamma}=\frac{\beta}{\gamma} \frac{\left\langle K^{2}\right\rangle}{\langle K\rangle}
$$

Early on,

- The degree of an infected person is chosen using $P_{n}(k)=k P(k) /\langle K\rangle$.
- The expected number of transmisions from a degree k individual before recovery is $k \beta / \gamma$.
[This implicitly assumes partners are constantly replaced].
- So

$$
\mathcal{R}_{0}=\sum_{k} \frac{k P(k)}{\langle K\rangle} k \frac{\beta}{\gamma}=\frac{\beta}{\gamma} \frac{\left\langle K^{2}\right\rangle}{\langle K\rangle}
$$

- This is the same whether the model is SIS or SIR.

Errors

- It was rigorously proven by [5] that if $P(k) \sim k^{-\alpha}$ then for a Configuration Model network there is no epidemic threshold for SIS disease, even if $\left\langle K^{2}\right\rangle$ is finite.

Errors

- It was rigorously proven by [5] that if $P(k) \sim k^{-\alpha}$ then for a Configuration Model network there is no epidemic threshold for SIS disease, even if $\left\langle K^{2}\right\rangle$ is finite.
- That is, no matter how small β is, an epidemic is possible.

Errors

- It was rigorously proven by [5] that if $P(k) \sim k^{-\alpha}$ then for a Configuration Model network there is no epidemic threshold for SIS disease, even if $\left\langle K^{2}\right\rangle$ is finite.
- That is, no matter how small β is, an epidemic is possible.
- This contradicts the prediction. How does this happen?

Errors

- It was rigorously proven by [5] that if $P(k) \sim k^{-\alpha}$ then for a Configuration Model network there is no epidemic threshold for SIS disease, even if $\left\langle K^{2}\right\rangle$ is finite.
- That is, no matter how small β is, an epidemic is possible.
- This contradicts the prediction. How does this happen?
- High degree nodes get infected and infect their neighbors. Then they recover.

Errors

- It was rigorously proven by [5] that if $P(k) \sim k^{-\alpha}$ then for a Configuration Model network there is no epidemic threshold for SIS disease, even if $\left\langle K^{2}\right\rangle$ is finite.
- That is, no matter how small β is, an epidemic is possible.
- This contradicts the prediction. How does this happen?
- High degree nodes get infected and infect their neighbors. Then they recover.
- So susceptible high degree nodes tend to have more infected neighbors.

Errors

- It was rigorously proven by [5] that if $P(k) \sim k^{-\alpha}$ then for a Configuration Model network there is no epidemic threshold for SIS disease, even if $\left\langle K^{2}\right\rangle$ is finite.
- That is, no matter how small β is, an epidemic is possible.
- This contradicts the prediction. How does this happen?
- High degree nodes get infected and infect their neighbors. Then they recover.
- So susceptible high degree nodes tend to have more infected neighbors.
- We expect to see islands of infection surrounding high degree nodes that persist long enough to spread the disease spreads to other high degree nodes. This holds even if the naive estimate has $\mathcal{R}_{0}<1$.

Recall our key questions

For SIR:

- \mathcal{P}, the probability of an epidemic.
- \mathcal{A}, the "attack rate": the fraction infected if an epidemic happens (better named the attack ratio).
- \mathcal{R}_{0}, the average number of infections caused by those infected early in the epidemic.
- $I(t)$, the time course of the epidemic.

For SIS:

- \mathcal{P}
- $I(\infty)$, the equilibrium level of infection
- \mathcal{R}_{0}
- $I(t)$

SIS endemic equilibrium prediction

Let's find the predicted endemic equilibrium:

- We set $i_{k}=0$ for all k and solve for I_{k} in terms of π_{l}.

SIS endemic equilibrium prediction

Let's find the predicted endemic equilibrium:

- We set $i_{k}=0$ for all k and solve for I_{k} in terms of π_{l}.
- Since we have π_{l} in terms of I_{k}, we get an equation to solve for π_{l}.

SIS endemic equilibrium prediction

Let's find the predicted endemic equilibrium:

- We set $i_{k}=0$ for all k and solve for I_{k} in terms of π_{l}.
- Since we have π_{l} in terms of I_{k}, we get an equation to solve for π_{1}.
- This gives the equilibrium infection level.

SIS endemic equilibrium calculation

- Set $i_{k}=0$:

$$
\beta k S_{k} \pi_{I}-\gamma I_{k}=0
$$

SIS endemic equilibrium calculation

- Set $i_{k}=0$:

$$
\beta k S_{k} \pi_{I}-\gamma I_{k}=0
$$

- Since $S_{k}=P(k)-I_{k}$ we have

$$
\beta k P(k) \pi_{I}-\beta k \pi_{l} I_{k}-\gamma I_{k}=0
$$

SIS endemic equilibrium calculation

- Set $i_{k}=0$:

$$
\beta k S_{k} \pi_{I}-\gamma I_{k}=0
$$

- Since $S_{k}=P(k)-I_{k}$ we have

$$
\beta k P(k) \pi_{l}-\beta k \pi_{l} I_{k}-\gamma I_{k}=0
$$

- So $I_{k}=\beta k P(k) \pi_{I} /\left(\gamma+\beta k \pi_{l}\right)$

SIS endemic equilibrium calculation

- But $\pi_{I}=\sum k I_{k} /\langle K\rangle$. Substituting for I_{k} yields

$$
\pi_{I}=\frac{\beta \pi_{I}}{\langle K\rangle} \sum_{k} \frac{P(k) k^{2}}{\left(\gamma+\beta k \pi_{I}\right)}
$$

SIS endemic equilibrium calculation

- But $\pi_{I}=\sum k l_{k} /\langle K\rangle$. Substituting for I_{k} yields

$$
\pi_{I}=\frac{\beta \pi_{I}}{\langle K\rangle} \sum_{k} \frac{P(k) k^{2}}{\left(\gamma+\beta k \pi_{l}\right)}
$$

- So if $\pi_{l} \neq 0$ then

$$
1=\frac{\beta}{\langle K\rangle} \sum_{k} \frac{P(k) k^{2}}{\gamma+\beta k \pi_{i}} .
$$

SIS endemic equilibrium calculation

- But $\pi_{I}=\sum k I_{k} /\langle K\rangle$. Substituting for I_{k} yields

$$
\pi_{I}=\frac{\beta \pi_{I}}{\langle K\rangle} \sum_{k} \frac{P(k) k^{2}}{\left(\gamma+\beta k \pi_{I}\right)}
$$

- So if $\pi_{l} \neq 0$ then

$$
1=\frac{\beta}{\langle K\rangle} \sum_{k} \frac{P(k) k^{2}}{\gamma+\beta k \pi_{i}} .
$$

- Not pleasant to solve for π_{I}, but doable. There is a positive solution iff $\mathcal{R}_{0}=\beta\left\langle K^{2}\right\rangle / \gamma\langle K\rangle>1$.

SIR final size

To calculate the SIR final size, we assume that for the initial condition a proportion ρ of the nodes are randomly selected to be infected.

SIR final size

To calculate the SIR final size, we assume that for the initial condition a proportion ρ of the nodes are randomly selected to be infected.

- Using an integrating factor, we have

$$
S_{k}=S_{k}(0) e^{-k \xi}
$$

SIR final size

To calculate the SIR final size, we assume that for the initial condition a proportion ρ of the nodes are randomly selected to be infected.

- Using an integrating factor, we have

$$
S_{k}=S_{k}(0) e^{-k \xi}
$$

- Set $\theta=e^{-\xi}$, so $S_{k}=S_{k}(0) \theta^{k}$ where $S_{k}(0)=(1-\rho) P(k) N$. Then

$$
S(t)=(1-\rho) N \sum_{k} P(k) \theta^{k}
$$

is a probability generating function. We define $\psi(x)=\sum_{k} P(k) x^{k}$.

Consolidating and continuing

Our model is now

$$
\begin{aligned}
\dot{\theta} & =-\beta \pi_{l} \theta \\
S_{k} & =(1-\rho) N P(k) \theta^{k} \\
I_{k} & =N P(k)-S_{k}-R_{k} \\
\dot{R}_{k} & =\gamma I_{k} \\
\pi_{I} & =\sum_{k} k I_{k} / N\langle K\rangle .
\end{aligned}
$$

- We set $\pi_{X}=\sum_{k} k X_{k} / N\langle K\rangle$ to be the proportion of stubs belonging to status X nodes. We have

Finishing up

- Note that $\dot{\pi}_{R}=\gamma \pi_{l}$ and $\dot{\theta}=-\beta \pi_{l} \theta$.

Finishing up

- Note that $\dot{\pi}_{R}=\gamma \pi_{l}$ and $\dot{\theta}=-\beta \pi_{l} \theta$.
- So $\dot{\pi}_{R} / \gamma=-\dot{\theta} / \beta \theta$. Thus

$$
\frac{\pi_{R}}{\gamma}=-\frac{\ln \theta}{\beta}
$$

Finishing up

- Note that $\dot{\pi}_{R}=\gamma \pi_{l}$ and $\dot{\theta}=-\beta \pi_{l} \theta$.
- So $\dot{\pi}_{R} / \gamma=-\dot{\theta} / \beta \theta$. Thus

$$
\frac{\pi_{R}}{\gamma}=-\frac{\ln \theta}{\beta}
$$

- Further

$$
\pi_{S}=(1-\rho) \sum_{k} N k P(k) \theta^{k} / N\langle K\rangle=(1-\rho) \theta \psi(\theta) /\langle K\rangle .
$$

Finishing up

- Note that $\dot{\pi}_{R}=\gamma \pi_{l}$ and $\dot{\theta}=-\beta \pi_{l} \theta$.
- So $\dot{\pi}_{R} / \gamma=-\dot{\theta} / \beta \theta$. Thus

$$
\frac{\pi_{R}}{\gamma}=-\frac{\ln \theta}{\beta}
$$

- Further

$$
\pi_{S}=(1-\rho) \sum_{k} N k P(k) \theta^{k} / N\langle K\rangle=(1-\rho) \theta \psi(\theta) /\langle K\rangle
$$

- So $\pi_{I}=1-\pi_{S}-\pi_{R}$. Substituting in terms of θ we have

$$
\begin{aligned}
\dot{\theta} & =-\beta \theta\left(1-(1-\rho) \frac{\theta \psi^{\prime}(\theta)}{\langle K\rangle}+\frac{\gamma \ln \theta}{\beta}\right) \\
S & =N(1-\rho) \psi(\theta) \\
I & =N-S-R \\
\dot{R} & =\gamma I
\end{aligned}
$$

Final size

At $t \rightarrow \infty$, we have $\dot{\theta} \rightarrow 0$. We assume $\rho \rightarrow 0$. So

$$
0=1-\frac{\theta \psi^{\prime}(\theta)}{\langle K\rangle}+\frac{\gamma \ln \theta}{\beta}
$$

Final size

At $t \rightarrow \infty$, we have $\dot{\theta} \rightarrow 0$. We assume $\rho \rightarrow 0$. So

$$
0=1-\frac{\theta \psi^{\prime}(\theta)}{\langle K\rangle}+\frac{\gamma \ln \theta}{\beta}
$$

Solving for $\theta(\infty)$:

$$
\theta(\infty)=\exp \left[-\frac{\beta}{\gamma}\left(1-\frac{\theta(\infty) \psi^{\prime}(\theta(\infty))}{\langle K\rangle}\right)\right]
$$

Final size

At $t \rightarrow \infty$, we have $\dot{\theta} \rightarrow 0$. We assume $\rho \rightarrow 0$. So

$$
0=1-\frac{\theta \psi^{\prime}(\theta)}{\langle K\rangle}+\frac{\gamma \ln \theta}{\beta}
$$

Solving for $\theta(\infty)$:

$$
\theta(\infty)=\exp \left[-\frac{\beta}{\gamma}\left(1-\frac{\theta(\infty) \psi^{\prime}(\theta(\infty))}{\langle K\rangle}\right)\right]
$$

Then

$$
S(\infty)=S(0) \psi(\theta(\infty)), \quad R(\infty)=N-S(0) \psi(\theta(\infty))
$$

Deriving equations

Simple heterogeneous model

References

References I

[1] Istvan Z Kiss, Joel C Miller, and Péter L Simon.
Mathematics of epidemics on networks: from exact to approximate models.
IAM. Springer, 2017.
[2] Romualdo Pastor-Satorras and Alessandro Vespignani.
Epidemic spreading in scale-free networks.
Physical Review Letters, 86(14):3200-3203, Apr 2001.
[3] Robert M. May and R. M. Anderson.
The transmission dynamics of human immunodeficiency virus (HIV).
Philosophical Transactions of the Royal Society London B, 321(1207):565-607, 1988.
[4] Annett Nold.
Heterogeneity in disease-transmission modeling.
Mathematical Biosciences, 52(3):227-240, 1980.
[5] S. Chatterjee and R. Durrett.
Contact processes on random graphs with power law degree distributions have critical value 0 .
The Annals of Probability, 37(6):2332-2356, 2009.

