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Deriving equations

Simple heterogeneous model
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Challenges for an analytic model

I When we rigorously derive

Ṡ = −β IS
N

İ = β
IS

N
− γI

for the compartmental model, we use the fact that it does not
matter which individuals are susceptible or infected.

I If there are S susceptible and I infected individuals, the
combined infection rate is βIS/N. Similarly the combined
recovery rate is γI .

I In a network, it matters exactly which nodes are susceptible or
infected.
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Triangle example

All that we need to predict the rate of change of S and I in a
triangle is the current value of S and I .

X 03 X 12 X 21 X 30

3γX 03

2βX 12

2γX 12

2βX 21

γX 21

4 / 36



Triangle example

All that we need to predict the rate of change of S and I in a
triangle is the current value of S and I .

X 03 X 12 X 21 X 30

3γX 03

2βX 12

2γX 12

2βX 21

γX 21

4 / 36



Triangle example

All that we need to predict the rate of change of S and I in a
triangle is the current value of S and I .

X 03 X 12 X 21 X 30

3γX 03

2βX 12

2γX 12

2βX 21

γX 21

4 / 36



Star example

For a star however, having just the current values of S and I is not
enough.

(numbered based on whether the central node is infected or not
and how many peripheral nodes are infected)
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Towards an analytic model∗

I How many I nodes?

[I ] = 3.

I How many S nodes?

[S ] = 22.

I How many SI edges?

[SI ] = 8.

I How many SSI triples?

[SSI ] = 19.

I How many ISI triples?

[ISI ] = 2.

∗By “analytic” I mean we can write down deterministic equations
rather than simply describe the transitions of a stochastic process.
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Towards an analytic model

d

dt
[X ] =

∑
possible
transitions

rate(transition)×∆[X ](transition)

That is, the rate of change of [X ] is the sum over all possible
transitions of the rate of the transition times the resulting change
in [X ] if that transition occurs.
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S I
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[Adapted from [1]]
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Finding SIR equations

I What is d
dt [S ]?

I 1 is removed whenever an SI edge transmits. So
I d

dt [S ] = −β[SI ]

I What is d
dt [I ]?

I An I is removed whenever a recovery occurs.
I An I is created whenever an SI edge transmits
I d

dt [I ] = β[SI ]− γI

I What is d
dt [SI ]?

I An SI edge is removed whenever the infected node transmits.
I An SI edge is removed whenever the infected node recovers.
I For each SSI triple that contains an SI edge that transmits, a

new SI edge is created.
I For each ISI triple, when the first node transmits it removes

the second SI pair as well.
I d

dt [SI ] = −(β + γ)[SI ] + β([SSI ]− [ISI ])
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Finding SIR equations

So we have

d

dt
[S ] = −β[SI ]

d

dt
[I ] = β[SI ]− γ[I ]

d

dt
[SI ] = −(β + γ)[SI ] + β([SSI ]− [ISI ])

d

dt
[SSI ] = · · ·

d

dt
[ISI ] = · · ·
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Finding SIS equations

The equations for SIS are very similar. Let’s look specifically at the
[SI ] equation:

d

dt
[SI ] = β[SSI ]− β[ISI ]− β[SI ]− γ[SI ]

I The first term represents a node in an SS pair getting infected
by another neighbor.

I The second term represents the susceptible node in an SI pair
being infected by another neighbor.

I The third term represents the susceptible node in an SI pair
being infected by the infected node in the pair.

I The fourth term represents the infected node in an SI pair
recovering.
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Closures
Our equations require larger and larger terms.

Let’s try short
circuiting that chain with a “closure approximation”:

[SI ] = [S ][I ] 〈K 〉 /N
where 〈K 〉 is the average degree. So we replace the d

dt [SI ]
equation with [SI ] = [S ][I ] 〈K 〉 /N.

I SIS:

[Ṡ ] = −β 〈K 〉 [S ][I ]/N + γ[I ]

[İ ] = β 〈K 〉 [S ][I ]/N − γ[I ]

I SIR:

[Ṡ ] = −β 〈K 〉 [S ][I ]/N

[İ ] = β 〈K 〉 [S ][I ]/N − γ[I ]

[Ṙ] = γ[I ]

These are equivalent to the Kermack-McKendrick equations
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[İ ] = β 〈K 〉 [S ][I ]/N − γ[I ]

I SIR:
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[Ṙ] = γ[I ]

These are equivalent to the Kermack-McKendrick equations

12 / 36



Closures
Our equations require larger and larger terms. Let’s try short
circuiting that chain with a “closure approximation”:

[SI ] = [S ][I ] 〈K 〉 /N
where 〈K 〉 is the average degree. So we replace the d

dt [SI ]
equation with [SI ] = [S ][I ] 〈K 〉 /N.

I SIS:

[Ṡ ] = −β 〈K 〉 [S ][I ]/N + γ[I ]
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Accuracy of [SI ] = 〈K 〉 [S ][I ]/N

Erdős–Rényi 〈K 〉 = 5 Config Model P(5) = 1

SIR
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Appropriateness of [SI ] = 〈K 〉 [S ][I ]/N

What assumptions are we making when we set
[SI ] = 〈K 〉 [S ][I ]/N?

I We’re assuming that nodes are not preferentially infected by
degree.

I We’re assuming that neighbors of infected nodes are no more
likely to be infected than any other node.

I We implicitly assume partners change rapidly.

I Same degree, annealed network. Partnerships have zero
duration.

I Large very similar degrees, transmission probability per edge
very low, and low clustering.

I As a general rule — if the disease will never transmit across
the same partnership twice, we can use models that ignore
partnership duration.
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A more accurate closure.

Our original equations are

d

dt
[S ] = −β[SI ]

d

dt
[I ] = β[SI ]− γ[I ]

d

dt
[SI ] = −(β + γ)[SI ] + β([SSI ]− [ISI ])

d

dt
[SSI ] = · · ·

d

dt
[ISI ] = · · ·

Perhaps we can do a better job if we allow larger terms.
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Approximating [SSI ] and [ISI ] instead of [SI ]

Can we approximate [SSI ] in terms of [SS ] and [SI ]?

I Consider an edge u–v with both nodes susceptible. There are
[SS ] ways to find such a pair.

I How many u–v–X are expected where X is infected?

I Assuming kv = 〈K 〉, there are 〈K 〉 − 1 possible edges from v .

I The probability X is infected is [SI ]/ 〈K 〉 [S ].

I So we predict [SSI ] = [SS ][SI ](〈K 〉 − 1)/ 〈K 〉 [S ].

I Unless knowing that u is susceptible would change the
prediction for the probability X is infected. (not for SIR, but
true for SIS since [SS ] edges may be concentrated around
those who have not been infected recently.)
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prediction for the probability X is infected. (not for SIR, but
true for SIS since [SS ] edges may be concentrated around
those who have not been infected recently.)
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New equations

Our new equations are

d

dt
[S ] = −β[SI ]

d

dt
[I ] = β[SI ]− γ[I ]

d

dt
[SI ] = −(β + γ)[SI ] + β

〈K 〉 − 1

〈K 〉

(
([SS ][SI ]− [SI ][SI ])

[S ]

)
d

dt
[SS ] = −2β

〈K 〉 − 1

〈K 〉
[SI ][SS ]

[S ]

(we need to add an [SS ] equation)
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Theory versus stochastic simulation
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I

Erdős–Rényi, 〈K〉 = 5

k = 5 for all nodes
P (2) = P (8) = 0.5

singles-level equations
singles-level equations with k − 1

pairs-level equations
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Deriving equations

Simple heterogeneous model

References
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A model for heterogeneous networks

I We can develop a model that accounts for degree correlation.

I Our model has terms like

[AkBl ]

To give the number of pairs involving a degree k node with
status A and a degree l node with status B.

I We derive similar unclosed equations, and then use a closure.
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Flow diagrams
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[Adapted from [1]]
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Hetterogeneous networks

Using the notation [Sk I ] =
∑

l [Sk Il ],

These models can account for degree assortativity or
dissasortativity, but LOTS OF EQUATIONS.
We can do closures in terms of pairs, but do not show that here
(see [1]).
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Simplest closure (annealed networks)

We can derive a model that accounts for degree distribution, but
not partnership duration [2, 3, 4]:

Our equations become
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Our equations become

SIS:

d

dt
[Sk ] = γ[Ik ]− τ [Sk ]kπI

d

dt
[Ik ] = τ [Sk ]kπI − γ[Ik ]

πI =
∑

k[Ik ]/N 〈K 〉
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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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R0

Early on,

I The degree of an infected person is chosen using
Pn(k) = kP(k)/ 〈K 〉.

I The expected number of transmisions from a degree k
individual before recovery is kβ/γ.
[This implicitly assumes partners are constantly replaced].

I So

R0 =
∑
k

kP(k)

〈K 〉 k
β

γ
=
β

γ

〈
K 2
〉

〈K 〉
I This is the same whether the model is SIS or SIR.
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Errors

I It was rigorously proven by [5] that if P(k) ∼ k−α then for a
Configuration Model network there is no epidemic threshold
for SIS disease, even if

〈
K 2
〉

is finite.

I That is, no matter how small β is, an epidemic is possible.

I This contradicts the prediction. How does this happen?

I High degree nodes get infected and infect their neighbors.
Then they recover.

I So susceptible high degree nodes tend to have more infected
neighbors.

I We expect to see islands of infection surrounding high degree
nodes that persist long enough to spread the disease spreads
to other high degree nodes. This holds even if the naive
estimate has R0 < 1.
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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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SIS endemic equilibrium prediction

Let’s find the predicted endemic equilibrium:

I We set İk = 0 for all k and solve for Ik in terms of πI .

I Since we have πI in terms of Ik , we get an equation to solve
for πI .

I This gives the equilibrium infection level.
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SIS endemic equilibrium calculation

I Set İk = 0:
βkSkπI − γIk = 0

I Since Sk = P(k)− Ik we have

βkP(k)πI − βkπI Ik − γIk = 0

I So Ik = βkP(k)πI/(γ + βkπI )
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SIS endemic equilibrium calculation

I But πI =
∑

kIk/ 〈K 〉. Substituting for Ik yields

πI =
βπI
〈K 〉

∑
k

P(k)k2

(γ + βkπI )

I So if πI 6= 0 then

1 =
β

〈K 〉
∑
k

P(k)k2

γ + βkπI
.

I Not pleasant to solve for πI , but doable. There is a positive
solution iff R0 = β

〈
K 2
〉
/γ 〈K 〉 > 1.
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SIR final size

To calculate the SIR final size, we assume that for the initial
condition a proportion ρ of the nodes are randomly selected to be
infected.

I Using an integrating factor, we have

Sk = Sk(0)e−kξ

I Set θ = e−ξ, so Sk = Sk(0)θk where Sk(0) = (1− ρ)P(k)N.
Then

S(t) = (1− ρ)N
∑
k

P(k)θk

is a probability generating function. We define
ψ(x) =

∑
k P(k)xk .

31 / 36



SIR final size

To calculate the SIR final size, we assume that for the initial
condition a proportion ρ of the nodes are randomly selected to be
infected.

I Using an integrating factor, we have

Sk = Sk(0)e−kξ

I Set θ = e−ξ, so Sk = Sk(0)θk where Sk(0) = (1− ρ)P(k)N.
Then

S(t) = (1− ρ)N
∑
k

P(k)θk

is a probability generating function. We define
ψ(x) =

∑
k P(k)xk .

31 / 36



SIR final size

To calculate the SIR final size, we assume that for the initial
condition a proportion ρ of the nodes are randomly selected to be
infected.

I Using an integrating factor, we have

Sk = Sk(0)e−kξ

I Set θ = e−ξ, so Sk = Sk(0)θk where Sk(0) = (1− ρ)P(k)N.
Then

S(t) = (1− ρ)N
∑
k

P(k)θk

is a probability generating function. We define
ψ(x) =

∑
k P(k)xk .

31 / 36



Consolidating and continuing

Our model is now

θ̇ = −βπI θ
Sk = (1− ρ)NP(k)θk

Ik = NP(k)− Sk − Rk

Ṙk = γIk

πI =
∑
k

kIk

/
N 〈K 〉 .

I We set πX =
∑

k kXk/N 〈K 〉 to be the proportion of stubs
belonging to status X nodes. We have

πS πI πR
γπI
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Finishing up

I Note that π̇R = γπI and θ̇ = −βπI θ.

I So π̇R/γ = −θ̇/βθ. Thus

πR
γ

= − ln θ

β

I Further
πS = (1− ρ)

∑
k NkP(k)θk/N 〈K 〉 = (1− ρ)θψ(θ)/ 〈K 〉.

I So πI = 1− πS − πR . Substituting in terms of θ we have

θ̇ = −βθ
(

1− (1− ρ)
θψ′(θ)

〈K 〉 +
γ ln θ

β

)
S = N(1− ρ)ψ(θ)

I = N − S − R

Ṙ = γI
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Final size

At t →∞, we have θ̇ → 0. We assume ρ→ 0. So

0 = 1− θψ′(θ)

〈K 〉 +
γ ln θ

β

Solving for θ(∞):

θ(∞) = exp

[
−β
γ

(
1− θ(∞)ψ′(θ(∞))

〈K 〉

)]

Then

S(∞) = S(0)ψ(θ(∞)), R(∞) = N − S(0)ψ(θ(∞))
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Deriving equations

Simple heterogeneous model
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