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SIR and percolation
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Percolation

We are going to explore a relationship between SIR disease and
percolation.
This will lead to methods to

» predict epidemic probability from a single infection.
» predict final size of an epidemic.

» predict the dynamics of an epidemic.
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Recall SIR behavior
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Modified model

We have a network

» An edge represents a potential transmission path (unweighted,
bidirectional).
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Modeling Disease Spread in a network
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Modeling Disease Spread in a network
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Modeling Disease Spread in a network
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Alternative perspective
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At each step, if there
is an edge to cross, it
is crossed with probabil-
ity p. No edge is ever
crossed twice.
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Percolation in different size networks

Comparison of largest (red) and second largest (blue) components
in different size networks below and above percolation threshold.

> Below threshold largest and second largest in a network are
about the same size as each other and similar size in both
networks

» Above threshold largest is proportional to network size.
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More detailed comparison of network size

N =100
— N =1000
N = 10000 |
N = 100000

Largest component proportion

0.0 0.2 0.4 » 0.6 0.8 1.0

» Above the threshold, an epidemic occurs if the initial node is
in the giant component.

» The entire component containing the index is infected.

» For a large network with given p, the giant component's size
is remarkably consistent. So the probability of an epidemic
equals the proportion infected.
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Probability
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Probability
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Now return back to transmitting with rate 5 and recovering with
rate ~y.
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Transmission probability

» We'll want to know the probability an infected node v
transmits to its neighbor u (assuming v is infected).
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Transmission probability

» We'll want to know the probability an infected node v
transmits to its neighbor u (assuming v is infected).

» Transmission is at rate 3, and recovery is at rate . The
probability of transmitting before recovering is 3/(5 + 7).

» Note: v transmitting to v and to w are correlated events
(both depend on duration of v's infection), but transmissions
from different nodes to a single node are independent.
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Directed percolation analogy
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Directed percolation analogy

Given a network G, | want to simulate the spread of an SIR disease
with given 8 and ~
» | use Tom as a random number generator.

» When a node u becomes infected, | ask Tom: “how long will
its infection last?”

» Then for each neighbor v | ask “will u transmit to v? When?"

» Tom decides he doesn't like the rush to generate a random
number on the fly. So he does it in advance.

» For each node Tom assigns the duration its infection will last if
infected.

» Once the duration is chosen, Tom decides which neighbors it
will transmit to and how long it will take.

» Then he reports those to me when | ask.

» Is it possible for me to know whether he is calculating in
advance or not?
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&

4.237 ~ 0.653

0.144

Every number that Tom gives me is a random number that is
generated independently of every other number. It doesn't matter
when he generates it.
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Typical structure
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Directed Percolation Equivalence

The following processes produce indistinguishable output:
» Standard epidemic simulation:
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Directed Percolation Equivalence

The following processes produce indistinguishable output:
» Standard epidemic simulation:
» Take a network G.
» Choose an initial infected individual.

> Allow edges to transmit until the random time the individual
recovers.

» Percolation-based simulation:

» Take a network G.

» Generate a new directed network H:
» For each individual u, assign a duration d of infection.
» For each edge from u, determine delay £ until transmitting.
» If £ < d, place directed edge into network with associated

time.
» Choose an initial infected individual.
» Trace the disease spread following edges in H, transmitting
after the given time.

16
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Comments on directed percolation

» Directed percolation can be used more generally when there
are other sources of heterogeneity in infectiousness and/or
susceptibility.

» The eventually infected nodes are exactly those nodes in the
out-component of the index case.

» The probability a random node is infected follows from the
size of its in-component.
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Typical structure

> We can understand the dynamics with a “bowtie” diagram.
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Typical structure

v

We can understand the dynamics with a “bowtie” diagram.
Above a threshold there is a Giant Strongly Connected
Component
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Typical structure

> We can understand the dynamics with a “bowtie” diagram.

» Above a threshold there is a Giant Strongly Connected
Component

» It has an in-component H;y and an out-component Hpoyr.

» If the index case is in Hjy or then all of and
Hout are eventually infected.

» So Epidemic Probability P = E(|Hy U |)/N and Attack
rate A = E(| U Hourl)/N.
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Some consequences

The dynamic process of the epidemic is now encoded in a static
network H. Studying H gives us some insight into what is
happening.
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Some consequences

The dynamic process of the epidemic is now encoded in a static
network H. Studying H gives us some insight into what is
happening.
> There is a symmetry between epidemic probability and
epidemic final size.

» Because edges out of a node are correlated and edges in to a
node are not, P # A.

» The probability of an epidemic is the proportion of nodes from
which there is a long chain of transmissions in H.
» The final size of an epidemic with a very small initial

proportion infected is the proportion of nodes which are the
target of a long chain of transmissions in H.
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SIR epidemics in Configuration Model networks

» Consider a Configuration Model network in which we infect a
(probably small) fraction of the population p.

» Allow the SIR disease to spread.

> We assume pN is large enough that stochastic die-out does
not play a major role.
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Recall our key questions

For SIR:
» P, the probability of an epidemic.

» A, the “attack rate": the fraction infected if an epidemic
happens (better named the attack ratio).

> Ry, the average number of infections caused by those infected
early in the epidemic.

» [(t), the time course of the epidemic.
For SIS:

» P

» /(00), the equilibrium level of infection

» Ro

> I(t)
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Ro calculation
For SIR disease:
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Recall our key questions

For SIR:
» P, the probability of an epidemic.

» A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

> Ry, the average number of infections caused by those infected
early in the epidemic.

» /(t), the time course of the epidemic.
For SIS:

» P

» /(00), the equilibrium level of infection

> Ro

> I(t)
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Changing the final size question

Instead of asking what proportion end up susceptible or recovered
ask:
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Changing the final size question

Instead of asking what proportion end up susceptible or recovered
ask:

What is the probability a random node does not have a
transmission path to it from one of the index nodes?
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© = P(v did not transmit to u)
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© = P(v did not transmit to u)

Probability a random degree—k test individual is susceptible at the
end is

% =Y " P(k)(1 - p)©* = (1 - p)(O)
k

where
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Finding ©

Probability a random degree—k partner never infected is

_ N kP(K) k-1 _ ¥'(©)
Given 3 and ~y, partner does not transmit to v with probability

_ B _
@—¢5+(1 ﬂ+7)(1 bs)
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Finding ©

Probability a random degree—k partner never infected is

kP(k "(©
bs= Y Lot = -
k
Given 3 and ~y, partner does not transmit to v with probability
p B (1-p))'(9)

_ _ b A =1
e_¢5+(1 ﬂ+7)(1 0s) =1 Bty Bty (K

26
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Final Size

So
A=1—(1-p)¥(O)

where 3 #(0)
__ 7 _
=5 Tt
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Final Size

So
A=1—(1-p)i(®)

where

_ v B (Y(O)
=5 TE A

A more rigorous definition would be that © is the probability that the given edge isn't the final edge of a directed
path from an index node to u in the percolated network H.
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Recall our key questions

For SIR:
» P, the probability of an epidemic.

» A, the “attack rate": the fraction infected if an epidemic
happens (better named the attack ratio).

> Ry, the average number of infections caused by those infected
early in the epidemic.

» [(t), the time course of the epidemic.
For SIS:

» P

» /(00), the equilibrium level of infection
> Ro

> I(t)
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Finding S(t) for SIR disease

2
<o

0(t) = P(v not yet transmitted to u)

J\N

D)

29 /49



Finding S(t) for SIR disease

.0
o

;\9% 9/%;;

0(t) = P(v not yet transmitted to u)

N )

Probability a random degree k test individual still susceptible is

(1 p)o(t)"

29 /49
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Finding S(t) for SIR disease

N )

;\0%9/%;

0(t) = P(v not yet transmitted to u)

o

Probability a random degree—k test individual still susceptible is
5(t) _ K _
N = 2P = RO = (1= e

where
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How does 6 evolve?

¢S @ 45/ ‘V’yd)/d)ﬁ’
u@ - u@ - u@ -~
B
1—0
{®v
u@

> 0= s+ ¢+ Pr.
> 0=—PBd).

» Our goal is to find ¢; in terms of 6.
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Because derivatives are proportional, ¢g = %(1 —0)
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Finding ¢s(t)

Probability a random degree—k partner still susceptible is
kP(k _ P'(6
> e e = - )t
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Final System

We finally have

(1—p)'(9)
(K)

R=~l S=(0-pNy®#) I=N-S—R

0=—-50+p +~(1-0)

Compare with

; (1—p)0'(6)
6=—-po+B0°—2" " _gyine
B0+ B K Y

R =~I, S = (1 — p)Ny(0), I=N—-S5—R

More details in [1, 2, 3]
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¢ ¢ Truncated Power Law

® @ Bimodal
A A Poisson

® B Homogeneous
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A good exercise

Repeat this derivation for a model in which infections last for one
time step and transmission occurs with probability p.
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Epidemic probability

» To calculate epidemic probability, we consider a single
introduced node, randomly chosen in the population.
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Epidemic probability

» To calculate epidemic probability, we consider a single
introduced node, randomly chosen in the population.

> p = 0
» h(x) = >, P(k)xk is the probability generating function for
the degree distribution.
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Calculating epidemic probability

a
~ ~
Q(D .
9 o Q(D) (y/ 9
NG a(D)
u@

Q(D) = P(u does not transmit to a neighbor|D) + P(u transmits, but neighbor doesn’t lead to an epidemic)
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Calculating epidemic probability

\ (D)
®

Q(D) = P(u does not transmit to a neighbor|D) + P(u transmits, but neighbor doesn’t lead to an epidemic)

Probability a random degree k index case whose infection duration
is D does not start an epidemic is

Q(D)k
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Calculating epidemic probability

Q( y/
\ (D)
®

Q(D) = P(u does not transmit to a neighbor|D) + P(u transmits, but neighbor doesn’t lead to an epidemic)

Probability a random degree—k index case whose infection duration
is D does not start an epidemic is

> P(k)Q(D)"
k
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Calculating epidemic probability

9

o y <
BN (D)
®

Q(D) = P(u does not transmit to a neighbor|D) + P(u transmits, but neighbor doesn’t lead to an epidemic)

Probability a random degree—k index case whese-infection—duration
isP does not start an epidemic is

1-P = /OOO ve 1> " P(k)Q(D)* dD
k
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Calculating epidemic probability

o y =
NG (D)
3

Q(D) = P(u does not transmit to a neighbor|D) + P(u transmits, but neighbor doesn’t lead to an epidemic)

Probability a random degree—k index case whese-infection—duration

isP does not start an epidemic is

1-P = /Ooo ve P> " P(k)Q(D)*dD = /OO e "Py(Q(D)) dD
k

0

where

38/49



Finding

39 /49



Finding

p(D)
v@

Probability a random partner of the index case having degree k
whose infection duration is D does not start an epidemic is

[1 - p(D)] + (D)D)

p(D)=1— e B0 is the probability of transmitting given infection duration of D
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Finding

p(D)
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Probablllty a random partner of the index case haw&géegree#e
does not start an epidemic is

Q(D):[l—p(D)]—i—p(D/O ve 7DZP (kD)1 ab
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Finding

Probablllty a random partner of the index case havmgdegree«k
does not start an epidemic is

(D) = 1 p(0)) + p(D) [ 2e 0 P n0) 1 ab
k

p(D)=1— e PP is the probability of transmitting given infection duration of D
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Finding

Probablllty a random partner of the index case ha\ﬁﬁgdegree%
does not start an epidemic is

QD) = 1 p(D)] + p(D) [ e 0 ZELLIHD

p(D)=1— e PP is the probability of transmitting given infection duration of D
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Finding

Probablllty a random partner of the index case ha\ﬁﬁgudegree%
does not start an epidemic is

B © aW(AD)) |
Q(D) = [1 - p(D)] + p(D) /0 re b

p(D)=1— e PD is the probability of transmitting given infection duration of D

39 /49



Calculating epidemic probability

We arrive at
1-P= / e "Py(Q(D)) dD
0

Q(D) =e PP+ (1 - efﬂD) /OOO ’ye7f)¢/(<ﬂK(>D)) db

In general we can only solve this numerically, but it is
straightforward. We start with a guess that Q(D) =1, plug it in
and iterate.

In fact the nth iteration will give the probability that the disease
spreads at least n generations.
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networks that accounts for partnership duration.
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SIS disease

It is very difficult to write down an analytic model of SIS disease in
networks that accounts for partnership duration.

» The difficulty results from the fact that a node can infect its
neighbors, thus changing the exposure it receives after it
recovers.

» This effect is real: a person who has recovered from, say,
MRSA but passed it on to his/her family is at higher risk of
reaquiring MRSA. Ignoring this weakens our ability to draw
conclusions.

» This has policy implications: how much will it reduce MRSA
transmission if we clear the disease from a hospital or a prison?

» So for SIS disease simulation is likely to play a major role.
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Percolation-like results and SIS

> It is possible to use percolation-like results to for rigorous
conclusions about SIS disease.
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Percolation-like results and SIS

> It is possible to use percolation-like results to for rigorous
conclusions about SIS disease.

» As a general rule, these rigorous results do not generalize if we
do not assume constant infection and transmission rates.
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A percolation-like approach

tJ\ A

9
Alex Bobbie Charlie

» Find transmission events as Poisson process
> Find recovery events as Poisson process

» Trace out from initial infection
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Some conclusions

» An infection of u at time 0 leads to an infection of v at time t
iff there is a path that doesn't go through a recovery event.
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Some conclusions

» An infection of u at time 0 leads to an infection of v at time t
iff there is a path that doesn't go through a recovery event.

» That reversed path also works. So any node infected at time t
would cause infection of the initial node at time t in the
reversed process.

> So the expected number of nodes infected at time t starting
from infection of u at time 0 is equal to the probability v is
infected at time t if we infect a random individual at time 0.

» The equilibrium size of an SIS epidemic with Poissonian
transmission and recovery equals the probability that an
epidemic occurs.
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SIS size vs Probability

1000 simulations starting with a single randomly chosen node in a
Configuration model network with P(1) = P(5) = 0.5.
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SIS size vs Probability

1000 simulations starting with a single randomly chosen node in a
Configuration model network with P(1) = P(5) = 0.5.
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SIS size vs Probability

1000 simulations starting with a single randomly chosen node in a
Configuration model network with P(1) = P(5) = 0.5.

=1 ~=1
537 did not die out
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