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SIR and percolation

SIS disease
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Percolation

We are going to explore a relationship between SIR disease and
percolation.
This will lead to methods to

I predict epidemic probability from a single infection.

I predict final size of an epidemic.

I predict the dynamics of an epidemic.
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Recall SIR behavior
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Modified model

We have a network

I An edge represents a potential transmission path (unweighted,
bidirectional).

I An infected node remains infected for a single time step.

I An infected node transmits to a neighbor with probability p.

I Warning — no longer assuming continuous time
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Modeling Disease Spread in a network
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Alternative perspective

I
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At each step, if there
is an edge to cross, it
is crossed with probabil-
ity p. No edge is ever
crossed twice.

I It is equivalent to decide in advance whether the edges will be
crossed if encountered.
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Percolation in different size networks
Comparison of largest (red) and second largest (blue) components
in different size networks below and above percolation threshold.

I Below threshold largest and second largest in a network are
about the same size as each other and similar size in both
networks

I Above threshold largest is proportional to network size.
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More detailed comparison of network size
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I Above the threshold, an epidemic occurs if the initial node is
in the giant component.

I The entire component containing the index is infected.

I For a large network with given p, the giant component’s size
is remarkably consistent. So the probability of an epidemic
equals the proportion infected.
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Now return back to transmitting with rate β and recovering with
rate γ.
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Transmission probability

I We’ll want to know the probability an infected node v
transmits to its neighbor u (assuming v is infected).

I Transmission is at rate β, and recovery is at rate γ. The
probability of transmitting before recovering is β/(β + γ).

I Note: v transmitting to u and to w are correlated events
(both depend on duration of v ’s infection), but transmissions
from different nodes to a single node are independent.
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Directed percolation analogy

Given a network G , I want to simulate the spread of an SIR disease
with given β and γ

I I use Tom as a random number generator.

I When a node u becomes infected, I ask Tom: “how long will
its infection last?”

I Then for each neighbor v I ask “will u transmit to v? When?”

I Tom decides he doesn’t like the rush to generate a random
number on the fly. So he does it in advance.

I For each node Tom assigns the duration its infection will last if
infected.

I Once the duration is chosen, Tom decides which neighbors it
will transmit to and how long it will take.

I Then he reports those to me when I ask.

I Is it possible for me to know whether he is calculating in
advance or not?
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Every number that Tom gives me is a random number that is
generated independently of every other number. It doesn’t matter
when he generates it.
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Typical structure
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Directed Percolation Equivalence

The following processes produce indistinguishable output:
I Standard epidemic simulation:

I Take a network G .
I Choose an initial infected individual.
I Allow edges to transmit until the random time the individual

recovers.

I Percolation-based simulation:

I Take a network G .
I Generate a new directed network H:

I For each individual u, assign a duration d of infection.
I For each edge from u, determine delay t̂ until transmitting.
I If t̂ < d , place directed edge into network with associated

time.

I Choose an initial infected individual.
I Trace the disease spread following edges in H, transmitting

after the given time.
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Comments on directed percolation

I Directed percolation can be used more generally when there
are other sources of heterogeneity in infectiousness and/or
susceptibility.

I The eventually infected nodes are exactly those nodes in the
out-component of the index case.

I The probability a random node is infected follows from the
size of its in-component.
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Typical structure

I We can understand the dynamics with a “bowtie” diagram.

I Above a threshold there is a Giant Strongly Connected
Component HSCC

I It has an in-component HIN and an out-component HOUT .
I If the index case is in HIN or HSCC then all of HSCC and

HOUT are eventually infected.
I So Epidemic Probability P = E(|HIN ∪ HSCC |)/N and Attack

rate A = E(|HSCC ∪ HOUT |)/N.
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Some consequences

The dynamic process of the epidemic is now encoded in a static
network H. Studying H gives us some insight into what is
happening.

I There is a symmetry between epidemic probability and
epidemic final size.

I Because edges out of a node are correlated and edges in to a
node are not, P 6= A.

I The probability of an epidemic is the proportion of nodes from
which there is a long chain of transmissions in H.

I The final size of an epidemic with a very small initial
proportion infected is the proportion of nodes which are the
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SIR epidemics in Configuration Model networks

I Consider a Configuration Model network in which we infect a
(probably small) fraction of the population ρ.

I Allow the SIR disease to spread.

I We assume ρN is large enough that stochastic die-out does
not play a major role.
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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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R0 calculation
For SIR disease:

I The probability a newly infected individual has degree k is
Pn(k).

I The expected number of infections it causes given k is
(k − 1) β

β+γ [it cannot reinfect the source of its infection].
I So

R0 = E(number infections caused|infected early)

=
∑
k

P(k |infected early)E(number infections|k)

=
∑
k

Pn(k)(k − 1)
β

β + γ

=
β

β + γ

∑
k

kP(k)(k − 1)

〈K 〉

=
β

β + γ

〈
K 2 − K

〉
〈K 〉
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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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Changing the final size question

Instead of asking what proportion end up susceptible or recovered
ask:

What is the probability a random node does not have a
transmission path to it from one of the index nodes?
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u

Θ
Θ Θ

Θ
Θ

Θ = P(v did not transmit to u)

Probability a random degree k test individual is susceptible at the
end is

S

N
=
∑
k

P(k)

(1− ρ)Θk

= (1− ρ)ψ(Θ)

where
ψ(x) =

∑
k

P(k)xk
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Finding Θ

v

u

Θ
Θ Θ

Θ
Θ

Θ
Θ

Probability a random degree k partner never infected is

φS =
∑
k

(1− ρ)Θk−1

= (1− ρ)
ψ′(Θ)

〈K 〉

Given β and γ, partner does not transmit to u with probability

Θ = φS +

(
1− β

β + γ

)
(1−φS)

= 1− β

β + γ
+

β

β + γ

(1− ρ)ψ′(Θ)

〈K 〉
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Final Size

So
A = 1− (1− ρ)ψ(Θ)

where

Θ =
γ

β + γ
+

β

β + γ
(1− ρ)

ψ′(Θ)

〈K 〉

A more rigorous definition would be that Θ is the probability that the given edge isn’t the final edge of a directed
path from an index node to u in the percolated network H.
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Recall our key questions

For SIR:

I P, the probability of an epidemic.

I A, the “attack rate”: the fraction infected if an epidemic
happens (better named the attack ratio).

I R0, the average number of infections caused by those infected
early in the epidemic.

I I (t), the time course of the epidemic.

For SIS:

I P
I I (∞), the equilibrium level of infection

I R0

I I (t)
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Finding S(t) for SIR disease

u

θ
θ θ

θ
θ

θ(t) = P(v not yet transmitted to u)

Probability a random test individual still susceptible is

S(t)

N
=
∑
k

P(k)

(1− ρ)θ(t)k

= (1− ρ)ψ(θ(t))

where
ψ(x) =

∑
k

P(k)xk
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How does θ evolve?

v

u

θ

θ

v

u

φS v

u

φI v

u

φR

v

u

1 − θ

I θ = φS + φI + φR .

I θ̇ = −βφI .
I Our goal is to find φI in terms of θ.
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Finding φR(t)

θ

v

u

φS v

u

φI v

u

φR

{ v

u

1 − θ

βφI

γφI

Because derivatives are proportional, φR = γ
β (1− θ)
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Finding φS(t)

v

u

θ
θ θ

θ
θ

θ
θ

Probability a random degree k partner still susceptible is

φS(t) =
∑
k

(1− ρ)θ(t)k−1

= (1− ρ)
ψ′(θ)

〈K 〉
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θ

v

u

(1 − ρ)ψ
′(θ)
〈K〉 v

u

φI v

u

γ
β
(1 − θ)

{ v

u

1 − θ

βφI

γφI

We have

φI = θ − φS − φR

= θ − (1− ρ)ψ′(θ)

〈K 〉
− γ

β
(1− θ)

θ̇ = −βφI

= −βθ + β
(1− ρ)ψ′(θ)

〈K 〉
+ γ(1− θ)
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Final System

We finally have

θ̇ = −βθ + β
(1− ρ)ψ′(θ)

〈K 〉
+ γ(1− θ)

Ṙ = γI S = (1− ρ)Nψ(θ) I = N − S − R

Compare with

θ̇ = −βθ + βθ
2 (1− ρ)ψ′(θ)

〈K〉
− θγ ln θ

Ṙ = γI , S = (1− ρ)Nψ(θ), I = N − S − R

More details in [1, 2, 3]
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A good exercise

Repeat this derivation for a model in which infections last for one
time step and transmission occurs with probability p.
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Epidemic probability

I To calculate epidemic probability, we consider a single
introduced node, randomly chosen in the population.

I ρ = 0.

I ψ(x) =
∑

k P(k)xk is the probability generating function for
the degree distribution.
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Calculating epidemic probability

u

Ω(D)
Ω(D)Ω(D)

Ω(D)

Ω(D)

Ω(D) = P(u does not transmit to a neighbor|D) + P(u transmits, but neighbor doesn’t lead to an epidemic)

Probability a random degree k index case whose infection duration
is D does not start an epidemic is

1−P =

∫ ∞
0

γe−γD
∑
k

P(k)

Ω(D)k

dD =

∫ ∞
0

γe−γDψ(Ω(D))dD

where
ψ(x) =

∑
k

P(k)xk
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Finding Ω

v

u

Ω(D̂)
Ω(D̂)Ω(D̂)

Ω(D̂)
Ω(D̂)

Ω(D̂)

Ω(D̂)

p(D)

Probability a random partner of the index case having degree k̂
whose infection duration is D̂ does not start an epidemic is

Ω(D) =

[1− p(D)] +

∫ ∞
0

γe−γD̂
∑
k̂

Pn(k̂)

p(D)Ω(D̂)k̂−1

dD̂

p(D) = 1− e−βD is the probability of transmitting given infection duration of D
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Calculating epidemic probability

We arrive at

1− P =

∫ ∞
0

γe−γDψ(Ω(D))dD

Ω(D) = e−βD +
(

1− e−βD
)∫ ∞

0
γe−γD̂

ψ′(Ω(D̂))

〈K 〉
dD̂

In general we can only solve this numerically, but it is
straightforward. We start with a guess that Ω(D) = 1, plug it in
and iterate.
In fact the nth iteration will give the probability that the disease
spreads at least n generations.
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SIS disease

It is very difficult to write down an analytic model of SIS disease in
networks that accounts for partnership duration.

I The difficulty results from the fact that a node can infect its
neighbors, thus changing the exposure it receives after it
recovers.

I This effect is real: a person who has recovered from, say,
MRSA but passed it on to his/her family is at higher risk of
reaquiring MRSA. Ignoring this weakens our ability to draw
conclusions.

I This has policy implications: how much will it reduce MRSA
transmission if we clear the disease from a hospital or a prison?

I So for SIS disease simulation is likely to play a major role.
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Percolation-like results and SIS

I It is possible to use percolation-like results to for rigorous
conclusions about SIS disease.

I As a general rule, these rigorous results do not generalize if we
do not assume constant infection and transmission rates.
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A percolation-like approach

t

BobbieAlex Charlie

I Find transmission events as Poisson process

I Find recovery events as Poisson process

I Trace out from initial infection
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Now invert the picture

t

BobbieAlex Charlie
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Some conclusions

I An infection of u at time 0 leads to an infection of v at time t
iff there is a path that doesn’t go through a recovery event.

I That reversed path also works. So any node infected at time t
would cause infection of the initial node at time t in the
reversed process.

I So the expected number of nodes infected at time t starting
from infection of u at time 0 is equal to the probability u is
infected at time t if we infect a random individual at time 0.

I The equilibrium size of an SIS epidemic with Poissonian
transmission and recovery equals the probability that an
epidemic occurs.
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SIS size vs Probability

1000 simulations starting with a single randomly chosen node in a
Configuration model network with P(1) = P(5) = 0.5.
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Mathematics of epidemics on networks: from exact to approximate models.
IAM. Springer, 2017.

49 / 49


